Category: Large Language Models (LLMs)

Exam Prep Hub for AI-900: Microsoft Azure AI Fundamentals

Welcome to the one-stop hub with information for preparing for the AI-900: Microsoft Azure AI Fundamentals certification exam. The content for this exam helps you to “Demonstrate fundamental AI concepts related to the development of software and services of Microsoft Azure to create AI solutions”. Upon successful completion of the exam, you earn the Microsoft Certified: Azure AI Fundamentals certification.

This hub provides information directly here (topic-by-topic as outlined in the official study guide), links to a number of external resources, tips for preparing for the exam, practice tests, and section questions to help you prepare. Bookmark this page and use it as a guide to ensure that you are fully covering all relevant topics for the AI-900 exam and making use of as many of the resources available as possible.


Audience profile (from Microsoft’s site)

This exam is an opportunity for you to demonstrate knowledge of machine learning and AI concepts and related Microsoft Azure services. As a candidate for this exam, you should have familiarity with Exam AI-900’s self-paced or instructor-led learning material.
This exam is intended for you if you have both technical and non-technical backgrounds. Data science and software engineering experience are not required. However, you would benefit from having awareness of:
- Basic cloud concepts
- Client-server applications
You can use Azure AI Fundamentals to prepare for other Azure role-based certifications like Azure Data Scientist Associate or Azure AI Engineer Associate, but it’s not a prerequisite for any of them.

Skills measured at a glance (as specified in the official study guide)

  • Describe Artificial Intelligence workloads and considerations (15–20%)
  • Describe fundamental principles of machine learning on Azure (15–20%)
  • Describe features of computer vision workloads on Azure (15–20%)
  • Describe features of Natural Language Processing (NLP) workloads on Azure (15–20%)
  • Describe features of generative AI workloads on Azure (20–25%)
Click on each hyperlinked topic below to go to the preparation content and practice questions for that topic. Also, there are 2 practice exams provided below.

Describe Artificial Intelligence workloads and considerations (15–20%)

Identify features of common AI workloads

Identify guiding principles for responsible AI

Describe fundamental principles of machine learning on Azure (15-20%)

Identify common machine learning techniques

Describe core machine learning concepts

Describe Azure Machine Learning capabilities

Describe features of computer vision workloads on Azure (15–20%)

Identify common types of computer vision solution

Identify Azure tools and services for computer vision tasks

Describe features of Natural Language Processing (NLP) workloads on Azure (15–20%)

Identify features of common NLP Workload Scenarios

Identify Azure tools and services for NLP workloads

Describe features of generative AI workloads on Azure (20–25%)

Identify features of generative AI solutions

Identify generative AI services and capabilities in Microsoft Azure


AI-900 Practice Exams

We have provided 2 practice exams (with answer keys) to help you prepare:

AI-900 Practice Exam 1 (60 questions with answers)

AI-900 Practice Exam 2 (60 questions with answers)


Important AI-900 Resources


To Do’s:

  • Schedule time to learn, study, perform labs, and do practice exams and questions
  • Schedule the exam based on when you think you will be ready; scheduling the exam gives you a target and drives you to keep working on it; but keep in mind that it can be rescheduled based on the rules of the provider.
  • Use the various resources above to learn and prepare.
  • Take the free Microsoft Learn practice test, any other available practice tests, and do the practice questions in each section and the two practice tests available on this exam prep hub.

Good luck to you passing the AI-900: Microsoft Azure AI Fundamentals certification exam and earning the Microsoft Certified: Azure AI Fundamentals certification!

Practice Questions: Describe Features and Capabilities of Azure OpenAI Service (AI-900 Exam Prep)

Practice Questions


Question 1

You need to build a chatbot that can generate natural, human-like responses and maintain context across multiple user interactions. Which Azure service should you use?

A. Azure AI Language
B. Azure AI Speech
C. Azure OpenAI Service
D. Azure AI Vision

Correct Answer: C

Explanation:
Azure OpenAI Service provides large language models capable of multi-turn conversational AI. Azure AI Language supports traditional NLP tasks but not advanced generative conversations.


Question 2

Which feature of Azure OpenAI Service enables semantic search by representing text as numerical vectors?

A. Prompt engineering
B. Text completion
C. Embeddings
D. Tokenization

Correct Answer: C

Explanation:
Embeddings convert text into vectors that capture semantic meaning, enabling similarity search and retrieval-augmented generation (RAG).


Question 3

An organization wants to generate summaries of long internal documents while ensuring their data is not used to train public models. Which service meets this requirement?

A. Open-source LLM hosted on a VM
B. Azure AI Language
C. Azure OpenAI Service
D. Azure Cognitive Search

Correct Answer: C

Explanation:
Azure OpenAI ensures customer data isolation and does not use customer data to retrain models, making it suitable for enterprise and regulated environments.


Question 4

Which type of workload is Azure OpenAI Service primarily designed to support?

A. Predictive analytics
B. Generative AI
C. Rule-based automation
D. Image preprocessing

Correct Answer: B

Explanation:
Azure OpenAI focuses on generative AI workloads, including text generation, conversational AI, code generation, and embeddings.


Question 5

A developer wants to build an AI assistant that can explain code, generate new code snippets, and translate code between programming languages. Which Azure service should be used?

A. Azure AI Language
B. Azure Machine Learning
C. Azure OpenAI Service
D. Azure AI Vision

Correct Answer: C

Explanation:
Azure OpenAI supports code-capable large language models designed for code generation, explanation, and translation.


Question 6

Which Azure OpenAI capability is MOST useful for building retrieval-augmented generation (RAG) solutions?

A. Chat completion
B. Embeddings
C. Image generation
D. Speech synthesis

Correct Answer: B

Explanation:
RAG solutions rely on embeddings to retrieve relevant content based on semantic similarity before generating responses.


Question 7

Which security feature is a key benefit of using Azure OpenAI Service instead of public OpenAI endpoints?

A. Anonymous access
B. Built-in image labeling
C. Azure Active Directory integration
D. Automatic data labeling

Correct Answer: C

Explanation:
Azure OpenAI integrates with Azure Active Directory and RBAC, providing enterprise-grade authentication and access control.


Question 8

A solution requires generating marketing copy, summarizing customer feedback, and answering user questions in natural language. Which Azure service best supports all these requirements?

A. Azure AI Language
B. Azure OpenAI Service
C. Azure AI Vision
D. Azure AI Search

Correct Answer: B

Explanation:
Azure OpenAI excels at generating and transforming text using large language models, covering all described scenarios.


Question 9

Which statement BEST describes how Azure OpenAI Service handles customer data?

A. Customer data is used to retrain models globally
B. Customer data is publicly accessible
C. Customer data is isolated and not used for model training
D. Customer data is stored permanently without controls

Correct Answer: C

Explanation:
Azure OpenAI ensures data isolation and does not use customer prompts or responses to retrain foundation models.


Question 10

When should you choose Azure OpenAI Service instead of Azure AI Language?

A. When performing key phrase extraction
B. When detecting named entities
C. When generating original text or conversational responses
D. When identifying sentiment polarity

Correct Answer: C

Explanation:
Azure AI Language is designed for traditional NLP tasks, while Azure OpenAI is used for generative AI tasks such as text generation and conversational AI.


Final Exam Tip

If the scenario involves creating new content, chatting naturally, generating code, or semantic understanding at scale, the correct answer is likely related to Azure OpenAI Service.


Go to the AI-900 Exam Prep Hub main page.

Describe Features and Capabilities of Azure OpenAI Service (AI-900 Exam Prep)

Overview

The Azure OpenAI Service provides access to powerful OpenAI large language models (LLMs)—such as GPT models—directly within the Microsoft Azure cloud environment. It enables organizations to build generative AI applications while benefiting from Azure’s security, compliance, governance, and enterprise integration capabilities.

For the AI-900 exam, Azure OpenAI is positioned as Microsoft’s primary service for generative AI workloads, especially those involving text, code, and conversational AI.


What Is Azure OpenAI Service?

Azure OpenAI Service allows developers to deploy, customize, and consume OpenAI models using Azure-native tooling, APIs, and security controls.

Key characteristics:

  • Hosted and managed by Microsoft Azure
  • Provides enterprise-grade security and compliance
  • Uses REST APIs and SDKs
  • Integrates seamlessly with other Azure services

👉 On the exam, Azure OpenAI is the correct answer when a scenario describes generative AI powered by large language models.


Core Capabilities of Azure OpenAI Service

1. Access to Large Language Models (LLMs)

Azure OpenAI provides access to advanced models such as:

  • GPT models for text generation and understanding
  • Chat models for conversational AI
  • Embedding models for semantic search and retrieval
  • Code-focused models for programming assistance

These models can:

  • Generate human-like text
  • Answer questions
  • Summarize content
  • Write code
  • Explain concepts
  • Generate creative content

2. Text and Content Generation

Azure OpenAI can generate:

  • Articles, emails, and reports
  • Chatbot responses
  • Marketing copy
  • Knowledge base answers
  • Product descriptions

Exam tip:
If the question mentions writing, summarizing, or generating text, Azure OpenAI is likely the answer.


3. Conversational AI (Chatbots)

Azure OpenAI supports natural, multi-turn conversations, making it ideal for:

  • Customer support chatbots
  • Virtual assistants
  • Internal helpdesk bots
  • AI copilots

These chatbots:

  • Maintain conversation context
  • Generate natural responses
  • Can be grounded in enterprise data

4. Code Generation and Assistance

Azure OpenAI can:

  • Generate code snippets
  • Explain existing code
  • Translate code between languages
  • Assist with debugging

This makes it valuable for developer productivity tools and AI-assisted coding scenarios.


5. Embeddings and Semantic Search

Azure OpenAI can create vector embeddings that represent the meaning of text.

Use cases include:

  • Semantic search
  • Document similarity
  • Recommendation systems
  • Retrieval-augmented generation (RAG)

Exam tip:
If the scenario mentions searching based on meaning rather than keywords, think embeddings + Azure OpenAI.


6. Enterprise Security and Compliance

One of the most important exam points:

Azure OpenAI provides:

  • Data isolation
  • No training on customer data
  • Azure Active Directory integration
  • Role-Based Access Control (RBAC)
  • Compliance with Microsoft standards

This makes it suitable for regulated industries.


7. Integration with Azure Services

Azure OpenAI integrates with:

  • Azure AI Foundry
  • Azure AI Search
  • Azure Machine Learning
  • Azure App Service
  • Azure Functions
  • Azure Logic Apps

This allows organizations to build end-to-end generative AI solutions within Azure.


Common Use Cases Tested on AI-900

You should associate Azure OpenAI with:

  • Chatbots and conversational agents
  • Text generation and summarization
  • AI copilots
  • Semantic search
  • Code generation
  • Enterprise generative AI solutions

Azure OpenAI vs Other Azure AI Services (Exam Perspective)

ServicePrimary Focus
Azure OpenAIGenerative AI using large language models
Azure AI LanguageTraditional NLP (sentiment, entities, key phrases)
Azure AI VisionImage analysis and OCR
Azure AI SpeechSpeech-to-text and text-to-speech
Azure AI FoundryEnd-to-end generative AI app lifecycle

Key Exam Takeaways

For AI-900, remember:

  • Azure OpenAI = Generative AI
  • Best for text, chat, code, and embeddings
  • Enterprise-ready with security and compliance
  • Uses pre-trained OpenAI models
  • Integrates with the broader Azure ecosystem

One-Line Exam Rule

If the question describes generating new content using large language models in Azure, the answer is likely related to Azure OpenAI Service.


Go to the Practice Exam Questions for this topic.

Go to the AI-900 Exam Prep Hub main page.

Practice Questions: Describe features and capabilities of Azure AI Foundry model catalog (AI-900 Exam Prep)

Practice Questions


Question 1

What is the primary purpose of the Azure AI Foundry model catalog?

A. To store training datasets for Azure Machine Learning
B. To centrally discover, compare, and deploy AI models
C. To monitor AI model performance in production
D. To automatically fine-tune all deployed models

Correct Answer: B

Explanation:
The Azure AI Foundry model catalog is a centralized repository that allows users to discover, evaluate, compare, and deploy AI models from Microsoft and partner providers. It is not primarily used for dataset storage or monitoring.


Question 2

Which types of models are available in the Azure AI Foundry model catalog?

A. Only Microsoft-built models
B. Only open-source community models
C. Models from Microsoft and multiple third-party providers
D. Only models trained within Azure Machine Learning

Correct Answer: C

Explanation:
The model catalog includes models from Microsoft, OpenAI, Meta, Anthropic, Cohere, and other partners, giving users access to a diverse range of generative and AI models.


Question 3

Which feature helps users compare models within the Azure AI Foundry model catalog?

A. Azure Cost Management
B. Model leaderboards and benchmarking
C. AutoML pipelines
D. Feature engineering tools

Correct Answer: B

Explanation:
The model catalog includes leaderboards and benchmark metrics, allowing users to compare models based on performance characteristics and suitability for specific tasks.


Question 4

What information is typically included in a model card in the Azure AI Foundry model catalog?

A. Only pricing details
B. Only deployment scripts
C. Metadata such as capabilities, limitations, and licensing
D. Only training dataset information

Correct Answer: C

Explanation:
Model cards provide descriptive metadata, including model purpose, supported tasks, licensing terms, and usage considerations, helping users make informed decisions.


Question 5

Which deployment option allows you to consume a model without managing infrastructure?

A. Managed compute
B. Dedicated virtual machines
C. Serverless API deployment
D. On-premises deployment

Correct Answer: C

Explanation:
Serverless API deployment (Models-as-a-Service) allows users to call models via APIs without managing underlying infrastructure, making it ideal for rapid development and scalability.


Question 6

What is a key benefit of having search and filtering in the model catalog?

A. It automatically selects the best model
B. It restricts models to one provider
C. It helps users quickly find models that match specific needs
D. It enforces Responsible AI policies

Correct Answer: C

Explanation:
Search and filtering features allow users to narrow down models based on capabilities, provider, task type, and deployment options, speeding up model selection.


Question 7

Which AI workload is the Azure AI Foundry model catalog most closely associated with?

A. Traditional rule-based automation
B. Predictive analytics dashboards
C. Generative AI solutions
D. Network security monitoring

Correct Answer: C

Explanation:
The model catalog is a core capability supporting generative AI workloads, such as text generation, chat, summarization, and multimodal applications.


Question 8

Why might an organization choose managed compute instead of a serverless API deployment?

A. To avoid version control
B. To reduce accuracy
C. To gain more control over performance and resources
D. To eliminate licensing requirements

Correct Answer: C

Explanation:
Managed compute provides greater control over performance, scaling, and resource allocation, which can be important for predictable workloads or specialized use cases.


Question 9

Which scenario best illustrates the use of the Azure AI Foundry model catalog?

A. Writing SQL queries for data analysis
B. Comparing multiple large language models before deployment
C. Creating Power BI dashboards
D. Training image classification models from scratch

Correct Answer: B

Explanation:
The model catalog is designed to help users evaluate and compare models before deploying them into generative AI applications.


Question 10

For the AI-900 exam, which statement best describes the Azure AI Foundry model catalog?

A. A low-level training engine for custom neural networks
B. A centralized hub for discovering and deploying AI models
C. A compliance auditing tool
D. A replacement for Azure Machine Learning

Correct Answer: B

Explanation:
For AI-900, the key takeaway is that the model catalog acts as a central hub that simplifies model discovery, comparison, and deployment within Azure’s generative AI ecosystem.


🔑 Exam Tip

If an AI-900 question mentions:

  • Choosing between multiple generative models
  • Evaluating model performance or benchmarks
  • Using models from different providers in Azure

👉 The correct answer is very likely related to the Azure AI Foundry model catalog.


Go to the AI-900 Exam Prep Hub main page.

Describe features and capabilities of Azure AI Foundry model catalog (AI-900 Exam Prep)

What Is the Azure AI Foundry Model Catalog?

The Azure AI Foundry model catalog (also known as Microsoft Foundry Models) is a centralized, searchable repository of AI models that developers and organizations can use to build generative AI solutions on Azure. It contains hundreds to thousands of models from multiple providers — including Microsoft, OpenAI, Anthropic, Meta, Cohere, DeepSeek, NVIDIA, and more — and provides tools to explore, compare, and deploy them for various AI workloads.

The model catalog is a key feature of Azure AI Foundry because it lets teams discover and evaluate the right models for specific tasks before integrating them into applications.


Key Capabilities of the Model Catalog

🌐 1. Wide and Diverse Model Selection

The catalog includes a broad set of models, such as:

  • Large language models (LLMs) for text generation and chat
  • Domain-specific models for legal, medical, or industry tasks
  • Multimodal models that handle text + images
  • Reasoning and specialized task models
    These models come from multiple providers including Microsoft, OpenAI, Anthropic, Meta, Mistral AI, and more.

This diversity ensures that developers can find models that fit a wide range of use cases, from simple text completion to advanced multi-agent workflows.


🔍 2. Search and Filtering Tools

The model catalog provides tools to help you find the right model by:

  • Keyword search
  • Provider and collection filters
  • Filtering by capabilities (e.g., reasoning, tool calling)
  • Deployment type (e.g., serverless API vs managed compute)
  • Inference and fine-tune task types
  • Industry or domain tags

These filters make it easier to match models to specific AI workloads.


📊 3. Comparison and Benchmarking

The catalog includes features like:

  • Model performance leaderboards
  • Benchmark metrics for selected models
  • Side-by-side comparison tools

This lets organizations evaluate and compare models based on real-world performance metrics before deployment.

This is especially useful when choosing between models for accuracy, cost, or task suitability.


📄 4. Model Cards with Metadata

Each model in the catalog has a model card that provides:

  • Quick facts about the model
  • A description
  • Version and supported data types
  • Licenses and legal information
  • Benchmark results (if available)
  • Deployment status and options

Model cards help users understand model capabilities, constraints, and appropriate use cases.


🚀 5. Multiple Deployment Options

Models in the Foundry catalog can be deployed using:

  • Serverless API: A “Models as a Service” approach where the model is hosted and managed by Azure, and you pay per API call
  • Managed compute: Dedicated virtual machines for predictable performance and long-running applications

This gives teams flexibility in choosing cost and performance trade-offs.


⚙️ 6. Integration and Customization

The model catalog isn’t just for discovery — it also supports:

  • Fine-tuning of models based on your data
  • Custom deployments within your enterprise environment
  • Integration with other Azure tools and services, like Azure AI Foundry deployment workflows and AI development tooling

This makes the catalog a foundational piece of end-to-end generative AI development on Azure.


Model Categories in the Catalog

The model catalog is organized into key categories such as:

  • Models sold directly by Azure: Models hosted and supported by Microsoft with enterprise-grade integration, support, and compliant terms.
  • Partner and community models: Models developed by external organizations like OpenAI, Anthropic, Meta, or Cohere. These often extend capabilities or offer domain-specific strengths.

This structure helps teams select between fully supported enterprise models and innovative third-party models.


Scenarios Where You Would Use the Model Catalog

The Azure AI Foundry model catalog is especially useful when:

  • Exploring models for text generation, chat, summarization, or reasoning
  • Comparing multiple models for accuracy vs cost
  • Deploying models in different formats (serverless API vs compute)
  • Integrating models from multiple providers in a single AI pipeline

It is a central discovery and evaluation hub for generative AI on Azure.


How This Relates to AI-900

For the AI-900 exam, you should understand:

  • The model catalog is a core capability of Azure AI Foundry
  • It allows discovering, comparing, and deploying models
  • It supports multiple model providers
  • It offers deployment options and metadata to guide selection

If a question mentions finding the right generative model for a use case, evaluating model performance, or using a variety of models in Azure, then the Azure AI Foundry model catalog is likely being described.


Summary (Exam Highlights)

  • Azure AI Foundry model catalog provides discoverability for thousands of AI models.
  • Models can be filtered, compared, and evaluated.
  • Catalog entries include useful metadata (model cards) and benchmarking.
  • Models come from Microsoft and partner providers like OpenAI, Anthropic, Meta, etc.
  • Deployment options vary between serverless APIs and managed compute.

Go to the Practice Exam Questions for this topic.

Go to the AI-900 Exam Prep Hub main page.

What Exactly Does an AI Engineer Do?

An AI Engineer is responsible for building, integrating, deploying, and operating AI-powered systems in production. While Data Scientists focus on experimentation and modeling, and AI Analysts focus on evaluation and business application, AI Engineers focus on turning AI capabilities into reliable, scalable, and secure products and services.

In short: AI Engineers make AI work in the real world. As you can imagine, this role has been getting a lot of interest lately.


The Core Purpose of an AI Engineer

At its core, the role of an AI Engineer is to:

  • Productionize AI and machine learning solutions
  • Integrate AI models into applications and workflows
  • Ensure AI systems are reliable, scalable, and secure
  • Operate and maintain AI solutions over time

AI Engineers bridge the gap between models and production systems.


Typical Responsibilities of an AI Engineer

While responsibilities vary by organization, AI Engineers typically work across the following areas.


Deploying and Serving AI Models

AI Engineers:

  • Package models for deployment
  • Expose models via APIs or services
  • Manage latency, throughput, and scalability
  • Handle versioning and rollback strategies

The goal is reliable, predictable AI behavior in production.


Building AI-Enabled Applications and Pipelines

AI Engineers integrate AI into:

  • Customer-facing applications
  • Internal decision-support tools
  • Automated workflows and agents
  • Data pipelines and event-driven systems

They ensure AI fits into broader system architectures.


Managing Model Lifecycle and Operations (MLOps)

A large part of the role involves:

  • Monitoring model performance and drift
  • Retraining or updating models
  • Managing CI/CD for models
  • Tracking experiments, versions, and metadata

AI Engineers ensure models remain accurate and relevant over time.


Working with Infrastructure and Platforms

AI Engineers often:

  • Design scalable inference infrastructure
  • Optimize compute and storage costs
  • Work with cloud services and containers
  • Ensure high availability and fault tolerance

Operational excellence is critical.


Ensuring Security, Privacy, and Responsible Use

AI Engineers collaborate with security and governance teams to:

  • Secure AI endpoints and data access
  • Protect sensitive or regulated data
  • Implement usage limits and safeguards
  • Support explainability and auditability where required

Trust and compliance are part of the job.


Common Tools Used by AI Engineers

AI Engineers typically work with:

  • Programming Languages such as Python, Java, or Go
  • ML Frameworks (e.g., TensorFlow, PyTorch)
  • Model Serving & MLOps Tools
  • Cloud AI Platforms
  • Containers & Orchestration (e.g., containerized services)
  • APIs and Application Frameworks
  • Monitoring and Observability Tools

The focus is on robustness and scale.


What an AI Engineer Is Not

Clarifying this role helps avoid confusion.

An AI Engineer is typically not:

  • A research-focused data scientist
  • A business analyst evaluating AI use cases
  • A data engineer focused only on data ingestion
  • A product owner defining AI strategy

Instead, AI Engineers focus on execution and reliability.


What the Role Looks Like Day-to-Day

A typical day for an AI Engineer may include:

  • Deploying a new model version
  • Debugging latency or performance issues
  • Improving monitoring or alerting
  • Collaborating with data scientists on handoffs
  • Reviewing security or compliance requirements
  • Scaling infrastructure for increased usage

Much of the work happens after the model is built.


How the Role Evolves Over Time

As organizations mature in AI adoption, the AI Engineer role evolves:

  • From manual deployments → automated MLOps pipelines
  • From single models → AI platforms and services
  • From reactive fixes → proactive reliability engineering
  • From project work → product ownership

Senior AI Engineers often define AI platform architecture and standards.


Why AI Engineers Are So Important

AI Engineers add value by:

  • Making AI solutions dependable and scalable
  • Reducing the gap between experimentation and impact
  • Ensuring AI can be safely used at scale
  • Enabling faster iteration and improvement

Without AI Engineers, many AI initiatives stall before reaching production.


Final Thoughts

An AI Engineer’s job is not to invent AI—it is to operationalize it.

When AI Engineers do their work well, AI stops being a demo or experiment and becomes a reliable, trusted part of everyday systems and decision-making.

Good luck on your data journey!

AI in Supply Chain Management: Transforming Logistics, Planning, and Execution

“AI in …” series

Artificial Intelligence (AI) is reshaping how supply chains operate across industries—making them smarter, more responsive, and more resilient. From demand forecasting to logistics optimization and predictive maintenance, AI helps companies navigate growing complexity and disruption in global supply networks.


What is AI in Supply Chain Management?

AI in Supply Chain Management (SCM) refers to using intelligent algorithms, machine learning, data analytics, and automation technologies to improve visibility, accuracy, and decision-making across supply chain functions. This includes planning, procurement, production, logistics, inventory, and customer fulfillment. AI processes massive and diverse datasets—historical sales, weather, social trends, sensor data, transportation feeds—to find patterns and make predictions that are faster and more accurate than traditional methods.

The current landscape sees widespread adoption from startups to global corporations. Leaders like Amazon, Walmart, Unilever, and PepsiCo all integrate AI across their supply chain operations to gain competitive edge and operational excellence.


How AI is Applied in Supply Chain Management

Here are some of the most impactful AI use cases in supply chain operations:

1. Predictive Demand Forecasting

AI models forecast demand by analyzing sales history, promotions, weather, and even social media trends. This helps reduce stockouts and excess inventory.

Examples:

  • Walmart uses machine learning to forecast store-level demand, reducing out-of-stock cases and optimizing orders.
  • Coca-Cola leverages real-time data for regional forecasting, improving production alignment with customer needs.

2. AI-Driven Inventory Optimization

AI recommends how much inventory to hold and where to place it, reducing carrying costs and minimizing waste.

Example: Fast-moving retail and e-commerce players use inventory tools that dynamically adjust stock levels based on demand and lead times.


3. Real-Time Logistics & Route Optimization

Machine learning and optimization algorithms analyze traffic, weather, vehicle capacity, and delivery windows to identify the most efficient routes.

Example: DHL improved delivery speed by about 15% and lowered fuel costs through AI-powered logistics planning.

News Insight: Walmart’s high-tech automated distribution centers use AI to optimize palletization, delivery routes, and inventory distribution—reducing waste and improving precision in grocery logistics.


4. Predictive Maintenance

AI monitors sensor data from equipment to predict failures before they occur, reducing downtime and repair costs.


5. Supplier Management and Risk Assessment

AI analyzes supplier performance, financial health, compliance, and external signals to score risks and recommend actions.

Example: Unilever uses AI platforms (like Scoutbee) to vet suppliers and proactively manage risk.


6. Warehouse Automation & Robotics

AI coordinates robotic systems and automation to speed picking, packing, and inventory movement—boosting throughput and accuracy.


Benefits of AI in Supply Chain Management

AI delivers measurable improvements in efficiency, accuracy, and responsiveness:

  • Improved Forecasting Accuracy – Reduces stockouts and overstock scenarios.
  • Lower Operational Costs – Through optimized routing, labor planning, and inventory.
  • Faster Decision-Making – Real-time analytics and automated recommendations.
  • Enhanced Resilience – Proactively anticipating disruptions like weather or supplier issues.
  • Better Customer Experience – Higher on-time delivery rates, dynamic fulfillment options.

Challenges to Adopting AI in Supply Chain Management

Implementing AI is not without obstacles:

  • Data Quality & Integration: AI is only as good as the data it consumes. Siloed or inconsistent data hampers performance.
  • Talent Gaps: Skilled data scientists and AI engineers are in high demand.
  • Change Management: Resistance from stakeholders slowing adoption of new workflows.
  • Cost and Complexity: Initial investment in technology and infrastructure can be high.

Tools, Technologies & AI Methods

Several platforms and technologies power AI in supply chains:

Major Platforms

  • IBM Watson Supply Chain & Sterling Suite: AI analytics, visibility, and risk modeling.
  • SAP Integrated Business Planning (IBP): Demand sensing and collaborative planning.
  • Oracle SCM Cloud: End-to-end planning, procurement, and analytics.
  • Microsoft Dynamics 365 SCM: IoT integration, machine learning, generative AI (Copilot).
  • Blue Yonder: Forecasting, replenishment, and logistics AI solutions.
  • Kinaxis RapidResponse: Real-time scenario planning with AI agents.
  • Llamasoft (Coupa): Digital twin design and optimization tools.

Core AI Technologies

  • Machine Learning & Predictive Analytics: Patterns and forecasts from historical and real-time data.
  • Natural Language Processing (NLP): Supplier profiling, contract analysis, and unstructured data insights.
  • Robotics & Computer Vision: Warehouse automation and quality inspection.
  • Generative AI & Agents: Emerging tools for planning assistance and decision support.
  • IoT Integration: Live tracking of equipment, shipments, and environmental conditions.

How Companies Should Implement AI in Supply Chain Management

To successfully adopt AI, companies should follow these steps:

1. Establish a Strong Data Foundation

  • Centralize data from ERP, WMS, TMS, CRM, IoT sensors, and external feeds.
  • Ensure clean, standardized, and time-aligned data for training reliable models.

2. Start With High-Value Use Cases

Focus on demand forecasting, inventory optimization, or risk prediction before broader automation.

3. Evaluate Tools & Build Skills

Select platforms aligned with your scale—whether enterprise tools like SAP IBP or modular solutions like Kinaxis. Invest in upskilling teams or partner with implementation specialists.

4. Pilot and Scale

Run short pilots to validate ROI before organization-wide rollout. Continuously monitor performance and refine models with updated data.

5. Maintain Human Oversight

AI should augment, not replace, human decision-making—especially for strategic planning and exceptions handling.


The Future of AI in Supply Chain Management

AI adoption will deepen with advances in generative AI, autonomous decision agents, digital twins, and real-time adaptive networks. Supply chains are expected to become:

  • More Autonomous: Systems that self-adjust plans based on changing conditions.
  • Transparent & Traceable: End-to-end visibility from raw materials to customers.
  • Sustainable: AI optimizing for carbon footprints and ethical sourcing.
  • Resilient: Predicting and adapting to disruptions from geopolitical or climate shocks.

Emerging startups like Treefera are even using AI with satellite and environmental data to enhance transparency in early supply chain stages.


Conclusion

AI is no longer a niche technology for supply chains—it’s a strategic necessity. Companies that harness AI thoughtfully can expect faster decision cycles, lower costs, smarter demand planning, and stronger resilience against disruption. By building a solid data foundation and aligning AI to business challenges, organizations can unlock transformational benefits and remain competitive in an increasingly dynamic global market.

AI in Cybersecurity: From Reactive Defense to Adaptive, Autonomous Protection

“AI in …” series

Cybersecurity has always been a race between attackers and defenders. What’s changed is the speed, scale, and sophistication of threats. Cloud computing, remote work, IoT, and AI-generated attacks have dramatically expanded the attack surface—far beyond what human analysts alone can manage.

AI has become a foundational capability in cybersecurity, enabling organizations to detect threats faster, respond automatically, and continuously adapt to new attack patterns.


How AI Is Being Used in Cybersecurity Today

AI is now embedded across nearly every cybersecurity function:

Threat Detection & Anomaly Detection

  • Darktrace uses self-learning AI to model “normal” behavior across networks and detect anomalies in real time.
  • Vectra AI applies machine learning to identify hidden attacker behaviors in network and identity data.

Endpoint Protection & Malware Detection

  • CrowdStrike Falcon uses AI and behavioral analytics to detect malware and fileless attacks on endpoints.
  • Microsoft Defender for Endpoint applies ML models trained on trillions of signals to identify emerging threats.

Security Operations (SOC) Automation

  • Palo Alto Networks Cortex XSIAM uses AI to correlate alerts, reduce noise, and automate incident response.
  • Splunk AI Assistant helps analysts investigate incidents faster using natural language queries.

Phishing & Social Engineering Defense

  • Proofpoint and Abnormal Security use AI to analyze email content, sender behavior, and context to stop phishing and business email compromise (BEC).

Identity & Access Security

  • Okta and Microsoft Entra ID use AI to detect anomalous login behavior and enforce adaptive authentication.
  • AI flags compromised credentials and impossible travel scenarios.

Vulnerability Management

  • Tenable and Qualys use AI to prioritize vulnerabilities based on exploit likelihood and business impact rather than raw CVSS scores.

Tools, Technologies, and Forms of AI in Use

Cybersecurity AI blends multiple techniques into layered defenses:

  • Machine Learning (Supervised & Unsupervised)
    Used for classification (malware vs. benign) and anomaly detection.
  • Behavioral Analytics
    AI models baseline normal user, device, and network behavior to detect deviations.
  • Natural Language Processing (NLP)
    Used to analyze phishing emails, threat intelligence reports, and security logs.
  • Generative AI & Large Language Models (LLMs)
    • Used defensively as SOC copilots, investigation assistants, and policy generators
    • Examples: Microsoft Security Copilot, Google Chronicle AI, Palo Alto Cortex Copilot
  • Graph AI
    Maps relationships between users, devices, identities, and events to identify attack paths.
  • Security AI Platforms
    • Microsoft Security Copilot
    • IBM QRadar Advisor with Watson
    • Google Chronicle
    • AWS GuardDuty

Benefits Organizations Are Realizing

Companies using AI-driven cybersecurity report major advantages:

  • Faster Threat Detection (minutes instead of days or weeks)
  • Reduced Alert Fatigue through intelligent correlation
  • Lower Mean Time to Respond (MTTR)
  • Improved Detection of Zero-Day and Unknown Threats
  • More Efficient SOC Operations with fewer analysts
  • Scalability across hybrid and multi-cloud environments

In a world where attackers automate their attacks, AI is often the only way defenders can keep pace.


Pitfalls and Challenges

Despite its power, AI in cybersecurity comes with real risks:

False Positives and False Confidence

  • Poorly trained models can overwhelm teams or miss subtle attacks.

Bias and Blind Spots

  • AI trained on incomplete or biased data may fail to detect novel attack patterns or underrepresent certain environments.

Explainability Issues

  • Security teams and auditors need to understand why an alert fired—black-box models can erode trust.

AI Used by Attackers

  • Generative AI is being used to create more convincing phishing emails, deepfake voice attacks, and automated malware.

Over-Automation Risks

  • Fully automated response without human oversight can unintentionally disrupt business operations.

Where AI Is Headed in Cybersecurity

The future of AI in cybersecurity is increasingly autonomous and proactive:

  • Autonomous SOCs
    AI systems that investigate, triage, and respond to incidents with minimal human intervention.
  • Predictive Security
    Models that anticipate attacks before they occur by analyzing attacker behavior trends.
  • AI vs. AI Security Battles
    Defensive AI systems dynamically adapting to attacker AI in real time.
  • Deeper Identity-Centric Security
    AI focusing more on identity, access patterns, and behavioral trust rather than perimeter defense.
  • Generative AI as a Security Teammate
    Natural language interfaces for investigations, playbooks, compliance, and training.

How Organizations Can Gain an Advantage

To succeed in this fast-changing environment, organizations should:

  1. Treat AI as a Force Multiplier, Not a Replacement
    Human expertise remains essential for context and judgment.
  2. Invest in High-Quality Telemetry
    Better data leads to better detection—logs, identity signals, and endpoint visibility matter.
  3. Focus on Explainable and Governed AI
    Transparency builds trust with analysts, leadership, and regulators.
  4. Prepare for AI-Powered Attacks
    Assume attackers are already using AI—and design defenses accordingly.
  5. Upskill Security Teams
    Analysts who understand AI can tune models and use copilots more effectively.
  6. Adopt a Platform Strategy
    Integrated AI platforms reduce complexity and improve signal correlation.

Final Thoughts

AI has shifted cybersecurity from a reactive, alert-driven discipline into an adaptive, intelligence-led function. As attackers scale their operations with automation and generative AI, defenders have little choice but to do the same—responsibly and strategically.

In cybersecurity, AI isn’t just improving defense—it’s redefining what defense looks like in the first place.

AI in Marketing: From Campaign Automation to Intelligent Growth Engines

“AI in …” series

Marketing has always been about understanding people—what they want, when they want it, and how best to reach them. What’s changed is the scale and complexity of that challenge. Customers interact across dozens of channels, generate massive amounts of data, and expect personalization as the default.

AI has become the connective tissue that allows marketing teams to turn fragmented data into insight, automation, and growth—often in real time.


How AI Is Being Used in Marketing Today

AI now touches nearly every part of the marketing function:

Personalization & Customer Segmentation

  • Netflix uses AI to personalize thumbnails, recommendations, and messaging—driving engagement and retention.
  • Amazon applies machine learning to personalize product recommendations and promotions across its marketing channels.

Content Creation & Optimization

  • Coca-Cola has used generative AI tools to co-create marketing content and creative assets.
  • Marketing teams use OpenAI models (via ChatGPT and APIs), Adobe Firefly, and Jasper AI to generate copy, images, and ad variations at scale.

Marketing Automation & Campaign Optimization

  • Salesforce Einstein optimizes email send times, predicts customer engagement, and recommends next-best actions.
  • HubSpot AI assists with content generation, lead scoring, and campaign optimization.

Paid Media & Ad Targeting

  • Meta Advantage+ and Google Performance Max use AI to automate bidding, targeting, and creative optimization across ad networks.

Customer Journey Analytics

  • Adobe Sensei analyzes cross-channel customer journeys to identify drop-off points and optimization opportunities.

Voice, Chat, and Conversational Marketing

  • Brands use AI chatbots and virtual assistants for lead capture, product discovery, and customer support.

Tools, Technologies, and Forms of AI in Use

Modern marketing AI stacks typically include:

  • Machine Learning & Predictive Analytics
    Used for churn prediction, propensity scoring, and lifetime value modeling.
  • Natural Language Processing (NLP)
    Powers content generation, sentiment analysis, and conversational interfaces.
  • Generative AI & Large Language Models (LLMs)
    Used to generate ad copy, emails, landing pages, social posts, and campaign ideas.
    • Examples: ChatGPT, Claude, Gemini, Jasper, Copy.ai
  • Computer Vision
    Applied to image recognition, brand safety, and visual content optimization.
  • Marketing AI Platforms
    • Salesforce Einstein
    • Adobe Sensei
    • HubSpot AI
    • Marketo Engage
    • Google Marketing Platform

Benefits Marketers Are Realizing

Organizations that adopt AI effectively see significant advantages:

  • Higher Conversion Rates through personalization
  • Faster Campaign Execution with automated content creation
  • Lower Cost per Acquisition (CPA) via optimized targeting
  • Improved Customer Insights and segmentation
  • Better ROI Measurement and attribution
  • Scalability without proportional increases in headcount

In many cases, AI allows small teams to operate at enterprise scale.


Pitfalls and Challenges

Despite its power, AI in marketing has real risks:

Over-Automation and Brand Dilution

  • Excessive reliance on generative AI can lead to generic or off-brand content.

Data Privacy and Consent Issues

  • AI-driven personalization must comply with GDPR, CCPA, and evolving privacy laws.

Bias in Targeting and Messaging

  • AI models can unintentionally reinforce stereotypes or exclude certain audiences.

Measurement Complexity

  • AI-driven multi-touch journeys can make attribution harder, not easier.

Tool Sprawl

  • Marketers may adopt too many AI tools without clear integration or strategy.

Where AI Is Headed in Marketing

The next wave of AI in marketing will be even more integrated and autonomous:

  • Hyper-Personalization in Real Time
    Content, offers, and experiences adapted instantly based on context and behavior.
  • Generative AI as a Creative Partner
    AI co-creating—not replacing—human creativity.
  • Predictive and Prescriptive Marketing
    AI recommending not just what will happen, but what to do next.
  • AI-Driven Brand Guardianship
    Models trained on brand voice, compliance, and tone to ensure consistency.
  • End-to-End Journey Orchestration
    AI managing entire customer journeys across channels automatically.

How Marketing Teams Can Gain an Advantage

To thrive in this fast-changing environment, marketing organizations should:

  1. Anchor AI to Clear Business Outcomes
    Start with revenue, retention, or efficiency goals—not tools.
  2. Invest in Clean, Unified Customer Data
    AI effectiveness depends on strong data foundations.
  3. Establish Human-in-the-Loop Workflows
    Maintain creative oversight and brand governance.
  4. Upskill Marketers in AI Literacy
    The best results come from marketers who know how to prompt, test, and refine AI outputs.
  5. Balance Personalization with Privacy
    Trust is a long-term competitive advantage.
  6. Rationalize the AI Stack
    Fewer, well-integrated tools outperform disconnected point solutions.

Final Thoughts

AI is transforming marketing from a campaign-driven function into an intelligent growth engine. The organizations that win won’t be those that simply automate more—they’ll be the ones that use AI to understand customers more deeply, move faster with confidence, and blend human creativity with machine intelligence.

In marketing, AI isn’t replacing storytellers—it’s giving them superpowers.

The State of Data for the Year 2025

As we close out 2025, it’s clear that the global data landscape has continued its unprecedented expansion — touching every part of life, business, and technology. From raw bytes generated every second to the ways that AI reshapes how we search, communicate, and innovate, this year has marked another seismic leap forward for data. Below is a comprehensive look at where we stand — and where things appear to be headed as we approach 2026.


🌐 Global Data Generation: A Tidal Wave

Amount of Data Generated

  • In 2025, the total volume of data created, captured, copied, and consumed globally is forecast to reach approximately 181 zettabytes (ZB) — up from about 147 ZB in 2024, representing roughly 23% year-over-year growth. Gitnux+1
  • That equates to an astonishing ~402 million terabytes of data generated daily. Exploding Topics

Growth Comparison: 2024 vs 2025

  • Data is growing at a compound rate: from roughly 120 ZB in 2023 to 147 ZB in 2024, then to about 181 ZB in 2025 — illustrating an ongoing surge of data creation driven by digital adoption and connected devices. Exploding Topics+1

🔍 Internet Users & Search Behavior

Number of People Online

  • As of early 2025, around 5.56 billion people are active internet users, accounting for nearly 68% of the global population — up from approximately 5.43 billion in 2024. DemandSage

Search Engine Activity

  • Google alone handles roughly 13.6 billion searches per day in 2025, totaling almost 5 trillion searches annually — a significant increase from the estimated 8.3 billion daily searches in 2024. Exploding Topics
  • Bing, while much smaller in scale, processes around 450+ million searches per day (~13–14 billion per month). Nerdynav

Market Share Snapshot

  • Google continues to dominate search with approximately 90% global market share, while Bing remains one of the top alternatives. StatCounter Global Stats

📱 Social Media Usage & Content Creation

User Numbers

  • There are roughly 5.4–5.45 billion social media users worldwide in 2025 — up from prior years and covering about 65–67% of the global population. XtendedView+1

Time Spent & Trends

  • Users spend on average about 2 hours and 20+ minutes per day on social platforms. SQ Magazine
  • AI plays a central role in content recommendations and creation, with 80%+ of social feeds relying on algorithms, and an increasing share of generated images and posts assisted by AI tools. SQ Magazine

📊 The Explosion of AI: LLMs & Tools

LLM Adoption

  • Large language models and AI assistants like ChatGPT have become globally pervasive:
    • ChatGPT alone has around 800 million weekly active users as of late 2025. First Page Sage
    • Daily usage figures exceed 2.5 billion user prompts globally, highlighting a massive shift toward direct AI interaction. Exploding Topics
  • Studies have shown that LLM-assisted writing and content creation are now embedded across formal and informal communication channels, indicating broad adoption beyond curiosity use cases. arXiv

AI Tools Everywhere

  • Generative AI is now a staple across industries — from content creation to customer service, data analytics to software development. Investments and usage in AI-powered analytics and automation tools continue to rise rapidly. layerai.org

💡 Trends in Data Collection & Analytics

Real-Time & Edge Processing

  • In 2025, more than half of corporate data processing is happening at the edge, closer to the source of data generation, enabling real-time insights. Pennsylvania Institute of Technology

Data Democratization

  • Data access and analytics tools have become more user-friendly, with low-code/no-code platforms enabling broader organizational participation in data insight generation. postlo.com

☁️ Cloud & Data Infrastructure

Cloud Data Growth

  • An ever-increasing portion of global data is stored in the cloud, with estimates suggesting around half of all data resides in cloud environments by 2025. Axis Intelligence

Data Centers & Energy

  • Data centers, particularly those supporting AI workloads, are expanding rapidly. This infrastructure surge is driving both innovation and concerns — including power consumption and sustainability challenges. TIME

📜 Data Laws & Regulation

New Legal Frameworks

  • In the UK, the Data (Use and Access) Act of 2025 was enacted, updating data protection and access rules related to UK-specific GDPR implementations. Wikipedia
  • Elsewhere, data regulation remains a focal point globally, with ongoing debates around privacy, governance, AI accountability, and cross–border data flows.

🛠️ Top Data Tools/Platforms of 2025

While specific rankings vary by industry and use case, 2025’s data ecosystem centers around:

  • Cloud data platforms: Snowflake, BigQuery, Redshift, Databricks
  • BI & visualization: Tableau, Power BI
  • AI/ML frameworks: TensorFlow, PyTorch, scalable LLM platforms
  • Automation & low-code analytics: dbt, Airflow, no-code toolchains
  • Real-time streaming: Kafka, ksqlDB

Ongoing trends emphasize integration between AI tooling and traditional analytics pipelines — blurring the lines between data engineering, analytics, and automation.

Note: specific tool adoption percentages vary by firm size and sector, but cloud-native and AI-augmented tools dominate enterprise workflows. Reddit


🌟 Novel Uses of Data in 2025

2025 saw innovative applications such as:

  • AI-powered disaster response using real-time social data streams.
  • Conversational assistants embedded into everyday workflows (search, writing, decision support).
  • Predictive analytics in health, finance, logistics, accelerated by real-time IoT feeds.
  • Synthetic datasets for simulation, security research, and model training. arXiv

🔮 What’s Expected in 2026

Continued Growth

  • Data volumes are projected to keep rising — potentially doubling every few years with the proliferation of AI, IoT, and immersive technologies.
  • LLM adoption will likely hit deeper integration into enterprise processes, customer experience workflows, and consumer tech.
  • AI governance and data privacy regulation will intensify globally, balancing innovation with accountability.

Emerging Frontiers

  • Multimodal AI blending text, vision, and real-time sensor data.
  • Federated learning and privacy-preserving analytics gaining traction.
  • Data meshes and decentralized data infrastructures challenging traditional monolithic systems.
  • Unified data platforms with AI-focused features and AI-focused business-ready data models are becoming common place.

📌 Final Thoughts

2025 has been another banner year for data — not just in sheer scale, but in how data powers decision-making, AI capabilities, and digital interactions across society. From trillions of searches to billions of social interactions, from zettabytes of oceans of data to democratized analytics tools, the data world continues to evolve at breakneck speed. And for data professionals and leaders, the next year promises even more opportunities to harness data for insight, innovation, and impact. Exciting stuff!

Thanks for reading!