Category: Python

AI Career Options for Early-Career Professionals and New Graduates

Artificial Intelligence is shaping nearly every industry, but breaking into AI right out of college can feel overwhelming. The good news is that you don’t need a PhD or years of experience to start a successful AI-related career. Many AI roles are designed specifically for early-career talent, blending technical skills with problem-solving, communication, and business understanding.

This article outlines excellent AI career options for people just entering the workforce, explaining what each role involves, why it’s a strong choice, and how to prepare with the right skills, tools, and learning resources.


1. AI / Machine Learning Engineer (Junior)

What It Is & What It Involves

Machine Learning Engineers build, train, test, and deploy machine learning models. Junior roles typically focus on:

  • Implementing existing models
  • Cleaning and preparing data
  • Running experiments
  • Supporting senior engineers

Why It’s a Good Option

  • High demand and strong salary growth
  • Clear career progression
  • Central role in AI development

Skills & Preparation Needed

Technical Skills

  • Python
  • SQL
  • Basic statistics & linear algebra
  • Machine learning fundamentals
  • Libraries: scikit-learn, TensorFlow, PyTorch

Where to Learn

  • Coursera (Andrew Ng ML specialization)
  • Fast.ai
  • Kaggle projects
  • University CS or data science coursework

Difficulty Level: ⭐⭐⭐⭐ (Moderate–High)


2. Data Analyst (AI-Enabled)

What It Is & What It Involves

Data Analysts use AI tools to analyze data, generate insights, and support decision-making. Tasks often include:

  • Data cleaning and visualization
  • Dashboard creation
  • Using AI tools to speed up analysis
  • Communicating insights to stakeholders

Why It’s a Good Option

  • Very accessible for new graduates
  • Excellent entry point into AI
  • Builds strong business and technical foundations

Skills & Preparation Needed

Technical Skills

  • SQL
  • Excel
  • Python (optional but helpful)
  • Power BI / Tableau
  • AI tools (ChatGPT, Copilot, AutoML)

Where to Learn

  • Microsoft Learn
  • Google Data Analytics Certificate
  • Kaggle datasets
  • Internships and entry-level analyst roles

Difficulty Level: ⭐⭐ (Low–Moderate)


3. Prompt Engineer / AI Specialist (Entry Level)

What It Is & What It Involves

Prompt Engineers design, test, and optimize instructions for AI systems to get reliable and accurate outputs. Entry-level roles focus on:

  • Writing prompts
  • Testing AI behavior
  • Improving outputs for business use cases
  • Supporting AI adoption across teams

Why It’s a Good Option

  • Low technical barrier
  • High demand across industries
  • Great for strong communicators and problem-solvers

Skills & Preparation Needed

Key Skills

  • Clear writing and communication
  • Understanding how LLMs work
  • Logical thinking
  • Domain knowledge (marketing, analytics, HR, etc.)

Where to Learn

  • OpenAI documentation
  • Prompt engineering guides
  • Hands-on practice with ChatGPT, Claude, Gemini
  • Real-world experimentation

Difficulty Level: ⭐⭐ (Low–Moderate)


4. AI Product Analyst / Associate Product Manager

What It Is & What It Involves

This role sits between business, engineering, and AI teams. Responsibilities include:

  • Defining AI features
  • Translating business needs into AI solutions
  • Analyzing product performance
  • Working with data and AI engineers

Why It’s a Good Option

  • Strong career growth
  • Less coding than engineering roles
  • Excellent mix of strategy and technology

Skills & Preparation Needed

Key Skills

  • Basic AI/ML concepts
  • Data analysis
  • Product thinking
  • Communication and stakeholder management

Where to Learn

  • Product management bootcamps
  • AI fundamentals courses
  • Internships or associate PM roles
  • Case studies and product simulations

Difficulty Level: ⭐⭐⭐ (Moderate)


5. AI Research Assistant / Junior Data Scientist

What It Is & What It Involves

These roles support AI research and experimentation, often in academic, healthcare, or enterprise environments. Tasks include:

  • Running experiments
  • Analyzing model performance
  • Data exploration
  • Writing reports and documentation

Why It’s a Good Option

  • Strong foundation for advanced AI careers
  • Exposure to real-world research
  • Great for analytical thinkers

Skills & Preparation Needed

Technical Skills

  • Python or R
  • Statistics and probability
  • Data visualization
  • ML basics

Where to Learn

  • University coursework
  • Research internships
  • Kaggle competitions
  • Online ML/statistics courses

Difficulty Level: ⭐⭐⭐⭐ (Moderate–High)


6. AI Operations (AIOps) / ML Operations (MLOps) Associate

What It Is & What It Involves

AIOps/MLOps professionals help deploy, monitor, and maintain AI systems. Entry-level work includes:

  • Model monitoring
  • Data pipeline support
  • Automation
  • Documentation

Why It’s a Good Option

  • Growing demand as AI systems scale
  • Strong alignment with data engineering
  • Less math-heavy than research roles

Skills & Preparation Needed

Technical Skills

  • Python
  • SQL
  • Cloud basics (Azure, AWS, GCP)
  • CI/CD concepts
  • ML lifecycle understanding

Where to Learn

  • Cloud provider learning paths
  • MLOps tutorials
  • GitHub projects
  • Entry-level data engineering roles

Difficulty Level: ⭐⭐⭐ (Moderate)


7. AI Consultant / AI Business Analyst (Entry Level)

What It Is & What It Involves

AI consultants help organizations understand and implement AI solutions. Entry-level roles focus on:

  • Use-case analysis
  • AI tool evaluation
  • Process improvement
  • Client communication

Why It’s a Good Option

  • Exposure to multiple industries
  • Strong soft-skill development
  • Fast career progression

Skills & Preparation Needed

Key Skills

  • Business analysis
  • AI fundamentals
  • Presentation and communication
  • Problem-solving

Where to Learn

  • Business analytics programs
  • AI fundamentals courses
  • Consulting internships
  • Case study practice

Difficulty Level: ⭐⭐⭐ (Moderate)


8. AI Content & Automation Specialist

What It Is & What It Involves

This role focuses on using AI to automate content, workflows, and internal processes. Tasks include:

  • Building automations
  • Creating AI-generated content
  • Managing tools like Zapier, Notion AI, Copilot

Why It’s a Good Option

  • Very accessible for non-technical graduates
  • High demand in marketing and operations
  • Rapid skill acquisition

Skills & Preparation Needed

Key Skills

  • Workflow automation
  • AI tools usage
  • Creativity and organization
  • Basic scripting (optional)

Where to Learn

  • Zapier and Make tutorials
  • Hands-on projects
  • YouTube and online courses
  • Real business use cases

Difficulty Level: ⭐⭐ (Low–Moderate)


How New Graduates Should Prepare for AI Careers

1. Build Foundations

  • Python or SQL
  • Data literacy
  • AI concepts (not just tools)

2. Practice with Real Projects

  • Personal projects
  • Internships
  • Freelance or volunteer work
  • Kaggle or GitHub portfolios

3. Learn AI Tools Early

  • ChatGPT, Copilot, Gemini
  • AutoML platforms
  • Visualization and automation tools

4. Focus on Communication

AI careers, and careers in general, reward those who can explain complex ideas simply.


Final Thoughts

AI careers are no longer limited to researchers or elite engineers. For early-career professionals, the best path is often a hybrid role that combines AI tools, data, and business understanding. Starting in these roles builds confidence, experience, and optionality—allowing you to grow into more specialized AI positions over time.
And the advice that many professionals give for gaining knowledge and breaking into the space is to “get your hands dirty”.

Good luck on your data journey!

Exam Prep Hub for DP-600: Implementing Analytics Solutions Using Microsoft Fabric

This is your one-stop hub with information for preparing for the DP-600: Implementing Analytics Solutions Using Microsoft Fabric certification exam. Upon successful completion of the exam, you earn the Fabric Analytics Engineer Associate certification.

This hub provides information directly here, links to a number of external resources, tips for preparing for the exam, practice tests, and section questions to help you prepare. Bookmark this page and use it as a guide to ensure that you are fully covering all relevant topics for the exam and using as many of the resources available as possible. We hope you find it convenient and helpful.

Why do the DP-600: Implementing Analytics Solutions Using Microsoft Fabric exam to gain the Fabric Analytics Engineer Associate certification?

Most likely, you already know why you want to earn this certification, but in case you are seeking information on its benefits, here are a few:
(1) there is a possibility for career advancement because Microsoft Fabric is a leading data platform used by companies of all sizes, all over the world, and is likely to become even more popular
(2) greater job opportunities due to the edge provided by the certification
(3) higher earnings potential,
(4) you will expand your knowledge about the Fabric platform by going beyond what you would normally do on the job and
(5) it will provide immediate credibility about your knowledge, and
(6) it may, and it should, provide you with greater confidence about your knowledge and skills.


Important DP-600 resources:


DP-600: Skills measured as of October 31, 2025:

Here you can learn in a structured manner by going through the topics of the exam one-by-one to ensure full coverage; click on each hyperlinked topic below to go to more information about it:

Skills at a glance

  • Maintain a data analytics solution (25%-30%)
  • Prepare data (45%-50%)
  • Implement and manage semantic models (25%-30%)

Maintain a data analytics solution (25%-30%)

Implement security and governance

Maintain the analytics development lifecycle

Prepare data (45%-50%)

Get Data

Transform Data

Query and analyze data

Implement and manage semantic models (25%-30%)

Design and build semantic models

Optimize enterprise-scale semantic models


Practice Exams:

We have provided 2 practice exams with answers to help you prepare.

DP-600 Practice Exam 1 (60 questions with answer key)

DP-600 Practice Exam 2 (60 questions with answer key)


Good luck to you passing the DP-600: Implementing Analytics Solutions Using Microsoft Fabric certification exam and earning the Fabric Analytics Engineer Associate certification!

Implement a Star Schema for a Semantic Model

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Implement and manage semantic models
--> Design and build semantic models
--> Implement a Star Schema for a Semantic Model

What Is a Star Schema?

A star schema is a logical data modeling pattern optimized for analytics and reporting. It organizes data into:

  • Fact tables: Contain numeric measurements (metrics) of business processes
  • Dimension tables: Contain descriptive attributes used for slicing, grouping, and filtering

The schema resembles a star: a central fact table with multiple dimensions radiating outward.


Why Use a Star Schema for Semantic Models?

Star schemas are widely used in Power BI semantic models (Tabular models) because they:

  • Improve query performance: Simplified joins and clear relationships enable efficient engine processing
  • Simplify reporting: Easy for report authors to understand and navigate
  • Support fast aggregations: Summary measures are computed more efficiently
  • Integrate with DAX naturally: Reduces complexity of measures

In DP-600 scenarios where performance and reusability matter, star schemas are often the best design choice.


Semantic Models and Star Schema

Semantic models define business logic that sits on top of data. Star schemas support semantic models by:

  • Providing clean dimensional context (e.g., Product, Region, Time)
  • Ensuring facts are centrally located for aggregations
  • Reducing the number of relationships and cycles
  • Enabling measures to be defined once and reused across visuals

Semantic models typically import star schema tables into Power BI, Direct Lake, or DirectQuery contexts.


Elements of a Star Schema

Fact Tables

A fact table stores measurable, numeric data about business events.

Examples:

  • Sales
  • Orders
  • Transactions
  • Inventory movements

Characteristics:

  • Contains foreign keys referring to dimensions
  • Contains numeric measures (e.g., quantity, revenue)

Dimension Tables

Dimension tables store contextual attributes that describe facts.

Examples:

  • Customer (name, segment, region)
  • Product (category, brand)
  • Date (calendar attributes)
  • Store or location

Characteristics:

  • Typically smaller than fact tables
  • Used to filter and group measures

Building a Star Schema for a Semantic Model

1. Identify the Grain of the Fact Table

The grain defines the level of detail in the fact table — for example:

  • One row per sales transaction per customer per day

Understand the grain before building dimensions.


2. Design Dimension Tables

Dimensions should be:

  • Descriptive
  • De-duplicated
  • Hierarchical where relevant (e.g., Country > State > City)

Example:

DimProductDimCustomerDimDate
ProductIDCustomerIDDateKey
NameNameYear
CategorySegmentQuarter
BrandRegionMonth

3. Define Relationships

Semantic models should have clear relationships:

  • Fact → Dimension: one-to-many
  • No ambiguous cycles
  • Avoid overly complex circular relationships

In a star schema:

  • Fact table joins to each dimension
  • Dimensions do not join to each other directly

4. Import into Semantic Model

In Power BI Desktop or Fabric:

  • Load fact and dimension tables
  • Validate relationships
  • Ensure correct cardinality
  • Mark the Date dimension as a Date table if appropriate

Benefits in Semantic Modeling

BenefitDescription
PerformanceSimplified relationships yield faster queries
UsabilityModel is intuitive for report authors
MaintenanceEasier to document and manage
DAX SimplicityMeasures use clear filter paths

DAX and Star Schema

Star schemas make DAX measures more predictable:

Example measure:

Total Sales = SUM(FactSales[SalesAmount])

With a proper star schema:

  • Filtering by dimension (e.g., DimCustomer[Region] = “West”) automatically propagates to the fact table
  • DAX measure logic is clean and consistent

Star Schema vs Snowflake Schema

FeatureStar SchemaSnowflake Schema
ComplexitySimpleMore complex
Query performanceTypically betterSlightly slower
Modeling effortLowerHigher
NormalizationLowHigh

For analytical workloads (like in Fabric and Power BI), star schemas are generally preferred.


When to Apply a Star Schema

Use star schema design when:

  • You are building semantic models for BI/reporting
  • Data is sourced from multiple systems
  • You need to support slicing and dicing by multiple dimensions
  • Performance and maintainability are priorities

Semantic models built on star schemas work well with:

  • Import mode
  • Direct Lake with dimensional context
  • Composite models

Common Exam Scenarios

You might encounter questions like:

  • “Which table should be the fact in this model?”
  • “Why should dimensions be separated from fact tables?”
  • “How does a star schema improve performance in a semantic model?”

Key answers will focus on:

  • Simplified relationships
  • Better DAX performance
  • Intuitive filtering and slicing

Best Practices for Semantic Star Schemas

  • Explicitly define date tables and mark them as such
  • Avoid many-to-many relationships where possible
  • Keep dimensions denormalized (flattened)
  • Ensure fact tables have surrogate keys linking to dimensions
  • Validate cardinality and relationship directions

Exam Tip

If a question emphasizes performance, simplicity, clear filtering behavior, and ease of reporting, a star schema is likely the correct design choice / optimal answer.


Summary

Implementing a star schema for a semantic model is a proven best practice in analytics:

  • Central fact table
  • Descriptive dimensions
  • One-to-many relationships
  • Optimized for DAX and interactive reporting

This approach supports Fabric’s goal of providing fast, flexible, and scalable analytics.

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

1. What is the primary purpose of a star schema in a semantic model?

A. To normalize data to reduce storage
B. To optimize transactional workloads
C. To simplify analytics and improve query performance
D. To enforce row-level security

Correct Answer: C

Explanation:
Star schemas are designed specifically for analytics. They simplify relationships and improve query performance by organizing data into fact and dimension tables.


2. In a star schema, what type of data is typically stored in a fact table?

A. Descriptive attributes such as names and categories
B. Hierarchical lookup values
C. Numeric measures related to business processes
D. User-defined calculated columns

Correct Answer: C

Explanation:
Fact tables store measurable, numeric values such as revenue, quantity, or counts, which are analyzed across dimensions.


3. Which relationship type is most common between fact and dimension tables in a star schema?

A. One-to-one
B. One-to-many
C. Many-to-many
D. Bidirectional many-to-many

Correct Answer: B

Explanation:
Each dimension record (e.g., a customer) can relate to many fact records (e.g., multiple sales), making one-to-many relationships standard.


4. Why are star schemas preferred over snowflake schemas in Power BI semantic models?

A. Snowflake schemas require more storage
B. Star schemas improve DAX performance and model usability
C. Snowflake schemas are not supported in Fabric
D. Star schemas eliminate the need for relationships

Correct Answer: B

Explanation:
Star schemas reduce relationship complexity, making DAX calculations simpler and improving query performance.


5. Which table should typically contain a DateKey column in a star schema?

A. Dimension tables only
B. Fact tables only
C. Both fact and dimension tables
D. Neither table type

Correct Answer: C

Explanation:
The fact table uses DateKey as a foreign key, while the Date dimension uses it as a primary key.


6. What is the “grain” of a fact table?

A. The number of rows in the table
B. The level of detail represented by each row
C. The number of dimensions connected
D. The data type of numeric columns

Correct Answer: B

Explanation:
Grain defines what a single row represents (e.g., one sale per customer per day).


7. Which modeling practice helps ensure optimal performance in a semantic model?

A. Creating relationships between dimension tables
B. Using many-to-many relationships by default
C. Keeping dimensions denormalized
D. Storing text attributes in the fact table

Correct Answer: C

Explanation:
Denormalized (flattened) dimension tables reduce joins and improve query performance in analytic models.


8. What happens when a dimension is used to filter a report in a properly designed star schema?

A. The filter applies only to the dimension table
B. The filter automatically propagates to the fact table
C. The filter is ignored by measures
D. The filter causes a many-to-many relationship

Correct Answer: B

Explanation:
Filters flow from dimension tables to the fact table through one-to-many relationships.


9. Which scenario is best suited for a star schema in a semantic model?

A. Real-time transactional processing
B. Log ingestion with high write frequency
C. Interactive reporting with slicing and aggregation
D. Application-level CRUD operations

Correct Answer: C

Explanation:
Star schemas are optimized for analytical queries involving aggregation, filtering, and slicing.


10. What is a common modeling mistake when implementing a star schema?

A. Using surrogate keys
B. Creating direct relationships between dimension tables
C. Marking a date table as a date table
D. Defining one-to-many relationships

Correct Answer: B

Explanation:
Dimensions should not typically relate to each other directly in a star schema, as this introduces unnecessary complexity.


Select, Filter, and Aggregate Data Using SQL

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Query and analyze data
--> Select, Filter, and Aggregate Data Using SQL

Working with SQL to select, filter, and aggregate data is a core skill for analytics engineers using Microsoft Fabric. Whether querying data in a warehouse, lakehouse SQL analytics endpoint, or semantic model via DirectQuery, SQL enables precise data retrieval and summarization for reporting, dashboards, and analytics solutions.

For DP-600, you should understand how to construct SQL queries that perform:

  • Selecting specific data columns
  • Filtering rows based on conditions
  • Aggregating values with grouping and summary functions

SQL Data Selection

Selecting data refers to using the SELECT clause to choose which columns or expressions to return.

Example:

SELECT
    CustomerID,
    OrderDate,
    SalesAmount
FROM Sales;

  • Use * to return all columns:
    SELECT * FROM Sales;
  • Use expressions to compute derived values: SELECT OrderDate, SalesAmount, SalesAmount * 1.1 AS AdjustedRevenue FROM Sales;

Exam Tip: Be purposeful in selecting only needed columns to improve performance.


SQL Data Filtering

Filtering data determines which rows are returned based on conditions using the WHERE clause.

Basic Filtering:

SELECT *
FROM Sales
WHERE OrderDate >= '2025-01-01';

Combined Conditions:

  • AND: WHERE Country = 'USA' AND SalesAmount > 1000
  • OR: WHERE Region = 'East' OR Region = 'West'

Null and Missing Value Filters:

WHERE SalesAmount IS NOT NULL

Exam Tip: Understand how WHERE filters reduce dataset size before aggregation.


SQL Aggregation

Aggregation summarizes grouped rows using functions like SUM, COUNT, AVG, MIN, and MAX.

Basic Aggregation:

SELECT
    SUM(SalesAmount) AS TotalSales
FROM Sales;

Grouped Aggregation:

SELECT
    Country,
    SUM(SalesAmount) AS TotalSales,
    COUNT(*) AS OrderCount
FROM Sales
GROUP BY Country;

Filtering After Aggregation:

Use HAVING instead of WHERE to filter aggregated results:

SELECT
    Country,
    SUM(SalesAmount) AS TotalSales
FROM Sales
GROUP BY Country
HAVING SUM(SalesAmount) > 100000;

Exam Tip:

  • Use WHERE for row-level filters before grouping.
  • Use HAVING to filter group-level aggregates.

Combining Select, Filter, and Aggregate

A complete SQL query often blends all three:

SELECT
    ProductCategory,
    COUNT(*) AS Orders,
    SUM(SalesAmount) AS TotalSales,
    AVG(SalesAmount) AS AvgSale
FROM Sales
WHERE OrderDate BETWEEN '2025-01-01' AND '2025-12-31'
GROUP BY ProductCategory
ORDER BY TotalSales DESC;

This example:

  • Selects specific columns and expressions
  • Filters by date range
  • Aggregates by product category
  • Orders results by summary metric

SQL in Different Fabric Workloads

WorkloadSQL Usage
WarehouseStandard T-SQL for BI queries
Lakehouse SQL AnalyticsSQL against Delta tables
Semantic Models via DirectQuerySQL pushed to source where supported
Dataflows/Power QuerySQL-like operations through M (not direct SQL)

Performance and Pushdown

When using SQL in Fabric:

  • Engines push filters and aggregations down to the data source for performance.
  • Select only needed columns early to limit data movement.
  • Avoid SELECT * in production queries unless necessary.

Key SQL Concepts for the Exam

ConceptWhy It Matters
SELECTDefines what data to retrieve
WHEREFilters data before aggregation
GROUP BYOrganizes rows into groups
HAVINGFilters after aggregation
Aggregate functionsSummarize numeric data

Understanding how these work together is essential for creating analytics-ready datasets.


Common Exam Scenarios

You may be asked to:

  • Write SQL to filter data based on conditions
  • Summarize data across groups
  • Decide whether to use WHERE or HAVING
  • Identify the correct SQL pattern for a reporting requirement

Example exam prompt:

“Which SQL query correctly returns the total sales per region, only for regions with more than 1,000 orders?”

Understanding aggregate filters (HAVING) and groupings will be key.


Final Exam Tips

If a question mentions:

  • “Return summary metrics”
  • “Only include rows that meet conditions”
  • “Group results by category”

…you’re looking at combining SELECT, WHERE, and GROUP BY in SQL.

  • WHERE filters rows before aggregation
  • HAVING filters after aggregation
  • GROUP BY is required for per-group metrics
  • Use aggregate functions intentionally
  • Performance matters — avoid unnecessary columns

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

1. Which SQL clause is used to filter rows before aggregation occurs?

A. HAVING
B. GROUP BY
C. WHERE
D. ORDER BY

Correct Answer: C

Explanation:
The WHERE clause filters individual rows before any aggregation or grouping takes place. HAVING filters results after aggregation.


2. You need to calculate total sales per product category. Which clause is required?

A. WHERE
B. GROUP BY
C. ORDER BY
D. HAVING

Correct Answer: B

Explanation:
GROUP BY groups rows so aggregate functions (such as SUM) can be calculated per category.


3. Which function returns the number of rows in each group?

A. SUM()
B. COUNT()
C. AVG()
D. MAX()

Correct Answer: B

Explanation:
COUNT() counts the number of rows in a group. It is commonly used to count records or transactions.


4. Which query correctly filters aggregated results?

A.

WHERE SUM(SalesAmount) > 10000

B.

HAVING SUM(SalesAmount) > 10000

C.

GROUP BY SUM(SalesAmount) > 10000

D.

ORDER BY SUM(SalesAmount) > 10000

Correct Answer: B

Explanation:
HAVING is used to filter aggregated values. WHERE cannot reference aggregate functions.


5. Which SQL statement returns the total number of orders?

A.

SELECT COUNT(*) FROM Orders;

B.

SELECT SUM(*) FROM Orders;

C.

SELECT TOTAL(Orders) FROM Orders;

D.

SELECT COUNT(Orders) FROM Orders;

Correct Answer: A

Explanation:
COUNT(*) counts all rows in a table, making it the correct way to return total order count.


6. Which clause is used to sort aggregated query results?

A. GROUP BY
B. WHERE
C. ORDER BY
D. HAVING

Correct Answer: C

Explanation:
ORDER BY sorts the final result set, including aggregated columns.


7. What happens if a column in the SELECT statement is not included in the GROUP BY clause or an aggregate function?

A. The query runs but returns incorrect results
B. SQL automatically groups it
C. The query fails
D. The column is ignored

Correct Answer: C

Explanation:
In SQL, any column in SELECT must either be aggregated or included in GROUP BY.


8. Which query returns average sales amount per country?

A.

SELECT Country, AVG(SalesAmount)
FROM Sales;

B.

SELECT Country, AVG(SalesAmount)
FROM Sales
GROUP BY Country;

C.

SELECT Country, SUM(SalesAmount)
GROUP BY Country;

D.

SELECT AVG(SalesAmount)
FROM Sales
GROUP BY Country;

Correct Answer: B

Explanation:
Grouping by Country allows AVG(SalesAmount) to be calculated per country.


9. Which filter removes rows with NULL values in a column?

A.

WHERE SalesAmount = NULL

B.

WHERE SalesAmount <> NULL

C.

WHERE SalesAmount IS NOT NULL

D.

WHERE NOT NULL SalesAmount

Correct Answer: C

Explanation:
SQL uses IS NULL and IS NOT NULL to check for null values.


10. Which SQL pattern is most efficient for analytics queries in Microsoft Fabric?

A. Selecting all columns and filtering later
B. Using SELECT * for simplicity
C. Filtering early and selecting only needed columns
D. Aggregating without grouping

Correct Answer: C

Explanation:
Filtering early and selecting only required columns improves performance by reducing data movement—an important Fabric best practice.


Filter Data

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Transform data
--> Filter data

Filtering data is one of the most fundamental transformation operations used when preparing analytics data. It ensures that only relevant, valid, and accurate records are included in curated tables or models. Filtering improves performance, reduces unnecessary processing overhead, and helps enforce business logic early in the analytics pipeline.

In Microsoft Fabric, filtering occurs at multiple transformation layers — from ingestion tools to interactive modeling. For the DP-600 exam, you should understand where, why, and how to filter data effectively using various tools and technologies within Fabric.


Why Filter Data?

Filtering data serves several key purposes in analytics:

1. Improve Query and Report Performance

  • Reduces the amount of data scanned and processed
  • Enables faster refresh and retrieval

2. Enforce Business Logic

  • Excludes irrelevant segments (e.g., test data, canceled transactions)
  • Supports clean analytical results

3. Prepare Analytics-Ready Data

  • Limits datasets to required time periods or categories
  • Produces smaller, focused outputs for reporting

4. Reduce Cost

  • Smaller processing needs reduce compute and storage overhead

Where Filtering Happens in Microsoft Fabric

Filtering can be implemented at multiple stages:

LayerHow You Filter
Power Query (Dataflows Gen2 / Lakehouse)UI filters or M code
SQL (Warehouse & Lakehouse SQL analytics)WHERE clauses
Spark (Lakehouse Notebooks)DataFrame filter() / where()
Pipelines (Data Movement)Source filters or query-based extraction
Semantic Models (Power BI / DAX)Query filters, slicers, and row-level security

Filtering early, as close to the data source as possible, ensures better performance downstream.


Tools and Techniques

1. Power Query (Low-Code)

Power Query provides a user-friendly interface to filter rows:

  • Text filters: Equals, Begins With, Contains, etc.
  • Number filters: Greater than, Between, Top N, etc.
  • Date filters: Before, After, This Month, Last 12 Months, etc.
  • Remove blank or null values

These filters are recorded as transformation steps and can be reused or versioned.


2. SQL (Warehouses & Lakehouses)

SQL filtering uses the WHERE clause:

SELECT *
FROM Sales
WHERE OrderDate >= '2025-01-01'
  AND Country = 'USA';

SQL filtering is efficient and pushed down to the engine, reducing row counts early.


3. Spark (Notebooks)

Filtering in Spark (PySpark example):

filtered_df = df.filter(df["SalesAmount"] > 1000)

Or with SQL in Spark:

SELECT *
FROM sales
WHERE SalesAmount > 1000;

Spark filtering is optimized for distributed processing across big datasets.


4. Pipelines (Data Movement)

During ingestion or ETL, you can apply filters in:

  • Copy activity query filters
  • Source queries
  • Pre-processing steps

This ensures only needed rows land in the target store.


5. Semantic Model Filters

In Power BI and semantic models, filtering can happen as:

  • Report filters
  • Slicers and visuals
  • Row-Level Security (RLS) — security-driven filtering

These filters control what users see rather than what data is stored.


Business and Data Quality Scenarios

Filtering is often tied to business needs such as:

  • Excluding invalid, test, or archived records
  • Restricting to active customers only
  • Selecting a specific date range (e.g., last fiscal year)
  • Filtering data for regional or product segments

Filtering vs Security

It’s important to distinguish filtering for transformation from security filters:

FilteringSecurity
Removes unwanted rows during transformationControls what users are allowed to see
Improves performanceEnforces access control
Happens before modelingHappens during query evaluation

Best Practices

When filtering data in Microsoft Fabric:

  • Filter early in the pipeline to reduce volume
  • Use pushdown filters in SQL when querying large sources
  • Document filtering logic for audit and governance
  • Combine filters logically (AND/OR) to match business rules
  • Avoid filtering in the semantic model when it can be done upstream

Common Exam Scenarios

You may be asked to:

  • Choose the correct tool and stage for filtering
  • Translate business rules into filter logic
  • Recognize when filtering improves performance
  • Identify risks of filtering too late or in the wrong layer

Example exam prompt:
A dataset should exclude test transactions and include only the last 12 months of sales. Which transformation step should be applied and where?
The correct answer will involve filtering early with SQL or Power Query before modeling.


Key Takeaways

  • Filtering data is a core part of preparing analytics-ready datasets.
  • Multiple Fabric components support filtering (Power Query, SQL, Spark, pipelines).
  • Filtering early improves performance and reduces unnecessary workload.
  • Understand filtering in context — transformation vs. security.

Final Exam Tips

  • When a question asks about reducing dataset size, improving performance, or enforcing business logic before loading into a model, filtering is often the correct action — and it usually belongs upstream.
  • Filter early and upstream whenever possible
  • Use SQL or Power Query for transformation-level filtering
  • Avoid relying solely on report-level filters for large datasets
  • Distinguish filtering for performance from security filtering

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

Question 1

What is the primary purpose of filtering data during the transformation phase?

A. To enforce user-level security
B. To reduce data volume and improve performance
C. To encrypt sensitive columns
D. To normalize data structures

Correct Answer: B

Explanation:
Filtering removes unnecessary rows early in the pipeline, reducing data volume, improving performance, and lowering compute costs. Security and normalization are separate concerns.


Question 2

Which Fabric component allows low-code, UI-driven row filtering during data preparation?

A. Spark notebooks
B. SQL warehouse
C. Power Query (Dataflows Gen2)
D. Semantic models

Correct Answer: C

Explanation:
Power Query provides a graphical interface for filtering rows using text, numeric, and date-based filters, making it ideal for low-code transformations.


Question 3

Which SQL clause is used to filter rows in a lakehouse or warehouse?

A. GROUP BY
B. HAVING
C. WHERE
D. ORDER BY

Correct Answer: C

Explanation:
The WHERE clause filters rows before aggregation or sorting, making it the primary SQL mechanism for data filtering.


Question 4

Which filtering approach is most efficient for very large datasets?

A. Filtering in Power BI visuals
B. Filtering after loading data into a semantic model
C. Filtering at the source using SQL or ingestion queries
D. Filtering using calculated columns

Correct Answer: C

Explanation:
Filtering as close to the source as possible minimizes data movement and processing, making it the most efficient approach for large datasets.


Question 5

In a Spark notebook, which method is commonly used to filter a DataFrame?

A. select()
B. filter() or where()
C. join()
D. distinct()

Correct Answer: B

Explanation:
Spark DataFrames use filter() or where() to remove rows based on conditions.


Question 6

Which scenario is an example of business-rule filtering?

A. Removing duplicate rows
B. Converting text to numeric data types
C. Excluding canceled orders from sales analysis
D. Creating a star schema

Correct Answer: C

Explanation:
Business-rule filtering enforces organizational logic, such as excluding canceled or test transactions from analytics.


Question 7

What is the key difference between data filtering and row-level security (RLS)?

A. Filtering improves query speed; RLS does not
B. Filtering removes data; RLS restricts visibility
C. Filtering is applied only in SQL; RLS is applied only in Power BI
D. Filtering is mandatory; RLS is optional

Correct Answer: B

Explanation:
Filtering removes rows from the dataset, while RLS controls which rows users can see without removing the data itself.


Question 8

Which filtering method is typically applied after data has already been loaded?

A. Source query filters
B. Pipeline copy activity filters
C. Semantic model report filters
D. Power Query transformations

Correct Answer: C

Explanation:
Report and visual filters in semantic models are applied at query time and do not reduce stored data volume.


Question 9

Why is filtering data early in the pipeline considered a best practice?

A. It increases data redundancy
B. It simplifies semantic model design
C. It reduces processing and storage costs
D. It improves data encryption

Correct Answer: C

Explanation:
Early filtering minimizes unnecessary data processing and storage, improving efficiency across the entire analytics solution.


Question 10

A dataset should include only the last 12 months of data. Where should this filter ideally be applied?

A. In Power BI slicers
B. In the semantic model
C. During data ingestion or transformation
D. In calculated measures

Correct Answer: C

Explanation:
Applying time-based filters during ingestion or transformation ensures only relevant data is processed and stored, improving performance and consistency.


Python Libraries for Data Science

Python has grown quickly to become one of the most widely used programming languages. While it’s a powerful, multi-purpose language used for creating just about any type of application, it has become a go-to language for data science, rivaling even “R”, the longtime favorite language and platform for data science.

Python’s popularity for data-based solutions has grown because of the many powerful, opensource, data-centric libraries it has available. Some of these libraries include:

NumPy

A library used for creating and manipulating multi-dimensional data arrays and can be used for handling multi-dimensional data and difficult mathematical operations.

Pandas

Pandas is a library that provides easy-to-use but high-performance data structures, such as the DataFrame, and data analysis tools.

Matplotlib

Matplotlib is a library used for data visualization such as creating histograms, bar charts, scatter plots, and much more.

SciPy

SciPy is a library that provides integration, statistics, and linear algebra packages for numerical computations.

Scikit-learn

Scikit-learn is a library used for machine learning. It is built on top of some other libraries including NumPy, Matplotlib, and SciPy.

There are many other data-centric Python libraries and some will be introduced in future articles. More can be learned here: https://www.python.org/