Category: Microsoft OneLake

Exam Prep Hub for DP-600: Implementing Analytics Solutions Using Microsoft Fabric

This is your one-stop hub with information for preparing for the DP-600: Implementing Analytics Solutions Using Microsoft Fabric certification exam. Upon successful completion of the exam, you earn the Fabric Analytics Engineer Associate certification.

This hub provides information directly here, links to a number of external resources, tips for preparing for the exam, practice tests, and section questions to help you prepare. Bookmark this page and use it as a guide to ensure that you are fully covering all relevant topics for the exam and using as many of the resources available as possible. We hope you find it convenient and helpful.

Why do the DP-600: Implementing Analytics Solutions Using Microsoft Fabric exam to gain the Fabric Analytics Engineer Associate certification?

Most likely, you already know why you want to earn this certification, but in case you are seeking information on its benefits, here are a few:
(1) there is a possibility for career advancement because Microsoft Fabric is a leading data platform used by companies of all sizes, all over the world, and is likely to become even more popular
(2) greater job opportunities due to the edge provided by the certification
(3) higher earnings potential,
(4) you will expand your knowledge about the Fabric platform by going beyond what you would normally do on the job and
(5) it will provide immediate credibility about your knowledge, and
(6) it may, and it should, provide you with greater confidence about your knowledge and skills.


Important DP-600 resources:


DP-600: Skills measured as of October 31, 2025:

Here you can learn in a structured manner by going through the topics of the exam one-by-one to ensure full coverage; click on each hyperlinked topic below to go to more information about it:

Skills at a glance

  • Maintain a data analytics solution (25%-30%)
  • Prepare data (45%-50%)
  • Implement and manage semantic models (25%-30%)

Maintain a data analytics solution (25%-30%)

Implement security and governance

Maintain the analytics development lifecycle

Prepare data (45%-50%)

Get Data

Transform Data

Query and analyze data

Implement and manage semantic models (25%-30%)

Design and build semantic models

Optimize enterprise-scale semantic models


Practice Exams:

We have provided 2 practice exams with answers to help you prepare.

DP-600 Practice Exam 1 (60 questions with answer key)

DP-600 Practice Exam 2 (60 questions with answer key)


Good luck to you passing the DP-600: Implementing Analytics Solutions Using Microsoft Fabric certification exam and earning the Fabric Analytics Engineer Associate certification!

Implement OneLake Integration for Eventhouse and Semantic Models

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Get data
--> Implement OneLake Integration for Eventhouse and Semantic Models

Microsoft Fabric is designed around the principle of OneLake as a single, unified data foundation. For the DP-600 exam, the topic “Implement OneLake integration for Eventhouse and semantic models” focuses on how both streaming data and analytical models can integrate with OneLake to enable reuse, governance, and multi-workload analytics.

This topic frequently appears in architecture and scenario-based questions, not as a pure feature checklist.

Why OneLake Integration Is Important

OneLake integration enables:

  • A single copy of data to support multiple analytics workloads
  • Reduced data duplication and ingestion complexity
  • Consistent governance and security
  • Seamless movement between real-time, batch, and BI analytics

For the exam, this is about understanding how data flows across Fabric experiences, not just where it lives.

OneLake Integration for Eventhouse

Eventhouse Recap

An Eventhouse is optimized for:

  • Real-time and near-real-time analytics
  • Streaming and telemetry data
  • High-ingestion rates
  • Querying with KQL (Kusto Query Language)

By default, Eventhouse is focused on real-time querying—but many solutions require more.

How Eventhouse Integrates with OneLake

When OneLake integration is implemented for an Eventhouse:

  • Streaming data ingested into the Eventhouse is persisted in OneLake
  • The same data becomes available for:
    • Lakehouses (Spark / SQL)
    • Warehouses (T-SQL reporting)
    • Notebooks
    • Semantic models
  • Real-time and historical analytics can coexist

This allows streaming data to participate in downstream analytics without re-ingestion.

Exam Signals for Eventhouse + OneLake

Look for phrases like:

  • Persist streaming data
  • Reuse event data
  • Combine real-time and batch analytics
  • Avoid duplicate ingestion pipelines

These strongly indicate OneLake integration for Eventhouse.

OneLake Integration for Semantic Models

Semantic Models Recap

A semantic model (Power BI dataset) defines:

  • Business-friendly tables and relationships
  • Measures and calculations (DAX)
  • Security rules (RLS, OLS)
  • A curated layer for reporting and analysis

Semantic models do not store raw data themselves—they rely on underlying data sources.

How Semantic Models Integrate with OneLake

Semantic models integrate with OneLake when their data source is:

  • A Lakehouse
  • A Warehouse
  • Eventhouse data persisted to OneLake

In these cases:

  • Data physically resides in OneLake
  • The semantic model acts as a logical abstraction
  • Multiple reports can reuse the same curated model

This supports the Fabric design pattern of shared semantic models over shared data.

Import vs DirectQuery (Exam-Relevant)

Semantic models can connect to OneLake-backed data using:

  • Import mode – best performance, scheduled refresh
  • DirectQuery – near-real-time access, source-dependent performance

DP-600 often tests your ability to choose the appropriate mode based on:

  • Data freshness requirements
  • Dataset size
  • Performance expectations

Eventhouse + OneLake + Semantic Models (End-to-End View)

A common DP-600 architecture looks like this:

  1. Streaming data is ingested into an Eventhouse
  2. Event data is persisted to OneLake
  3. Data is accessed by:
    • Lakehouse (for transformations)
    • Warehouse (for BI-friendly schemas)
  4. A shared semantic model is built on top
  5. Multiple Power BI reports reuse the model

This architecture supports real-time insights and historical analysis from the same data.

Governance and Security Benefits

OneLake integration ensures:

  • Centralized security and permissions
  • Sensitivity labels applied consistently
  • Reduced risk of shadow datasets
  • Clear lineage across streaming, batch, and BI layers

Exam questions often frame this as a governance or compliance requirement.

Common Exam Scenarios

You may be asked to:

  • Enable downstream analytics from streaming data
  • Avoid duplicating event ingestion
  • Support real-time dashboards and historical reports
  • Reuse a semantic model across teams
  • Align streaming analytics with enterprise BI

Always identify:

  • Where the data is persisted
  • Who needs access
  • How fresh the data must be
  • Which query language is required

Best Practices (DP-600 Focus)

  • Use Eventhouse for real-time ingestion and KQL analytics
  • Enable OneLake integration for reuse and persistence
  • Build shared semantic models on OneLake-backed data
  • Avoid multiple ingestion paths for the same data
  • Let OneLake act as the single source of truth

Key Takeaway
For the DP-600 exam, implementing OneLake integration for Eventhouse and semantic models is about enabling streaming data to flow seamlessly into governed, reusable analytical solutions. Eventhouse delivers real-time insights, OneLake provides a unified storage layer, and semantic models expose trusted, business-ready analytics—all without unnecessary duplication.

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

And also keep in mind …

  • When you see streaming data + reuse + BI or ML, think:
    Eventhouse → OneLake → Lakehouse/Warehouse → Semantic model

1. What is the primary benefit of integrating an Eventhouse with OneLake?

A. Faster Power BI rendering
B. Ability to query event data using DAX
C. Persistence and reuse of streaming data across Fabric workloads
D. Elimination of real-time ingestion

Correct Answer: C

Explanation:
OneLake integration allows streaming data ingested into an Eventhouse to be persisted and reused by Lakehouses, Warehouses, notebooks, and semantic models—without re-ingestion.

2. Which query language is used for real-time analytics directly in an Eventhouse?

A. T-SQL
B. Spark SQL
C. DAX
D. KQL

Correct Answer: D

Explanation:
Eventhouses are built on KQL (Kusto Query Language), which is optimized for querying streaming and time-series data.

3. A team wants to combine real-time event data with historical batch data in Power BI. What is the BEST approach?

A. Build separate semantic models for each data source
B. Persist event data to OneLake and build a semantic model on top
C. Use DirectQuery to the Eventhouse only
D. Export event data to Excel

Correct Answer: B

Explanation:
Persisting event data to OneLake allows it to be combined with historical data and exposed through a single semantic model.

4. How do semantic models integrate with OneLake in Microsoft Fabric?

A. Semantic models store data directly in OneLake
B. Semantic models replace OneLake storage
C. Semantic models reference OneLake-backed sources such as Lakehouses and Warehouses
D. Semantic models only support streaming data

Correct Answer: C

Explanation:
Semantic models do not store raw data; they reference OneLake-backed sources like Lakehouses, Warehouses, or persisted Eventhouse data.

5. Which scenario MOST strongly indicates the need for OneLake integration for Eventhouse?

A. Ad hoc SQL reporting on static data
B. Monthly batch ETL processing
C. Reusing streaming data for BI, ML, and historical analysis
D. Creating a single real-time dashboard

Correct Answer: C

Explanation:
OneLake integration is most valuable when streaming data must be reused across multiple analytics workloads beyond real-time querying.

6. Which storage principle best describes the benefit of OneLake integration?

A. Multiple copies for better performance
B. One copy of data, many analytics experiences
C. Schema-on-read only
D. Real-time only storage

Correct Answer: B

Explanation:
Microsoft Fabric promotes the principle of storing one copy of data in OneLake and enabling multiple analytics experiences on top of it.

7. Which connectivity mode should be chosen for a semantic model when near-real-time access to event data is required?

A. Import
B. Cached mode
C. DirectQuery
D. Snapshot mode

Correct Answer: C

Explanation:
DirectQuery enables near-real-time access to the underlying data, making it suitable when freshness is critical.

8. What governance advantage does OneLake integration provide?

A. Automatic deletion of sensitive data
B. Centralized security and sensitivity labeling
C. Removal of workspace permissions
D. Unlimited data access

Correct Answer: B

Explanation:
OneLake integration supports centralized governance, including consistent permissions and sensitivity labels across streaming and batch data.

9. Which end-to-end architecture BEST supports both real-time dashboards and historical reporting?

A. Eventhouse only
B. Lakehouse only
C. Eventhouse with OneLake integration and a shared semantic model
D. Warehouse without ingestion

Correct Answer: C

Explanation:
This architecture enables real-time ingestion via Eventhouse, persistence in OneLake, and curated reporting through a shared semantic model.

10. On the DP-600 exam, which phrase is MOST likely to indicate the need for OneLake integration for Eventhouse?

A. “SQL-only reporting solution”
B. “Single-user analysis”
C. “Avoid duplicating streaming ingestion pipelines”
D. “Static reference data”

Correct Answer: C

Explanation:
Avoiding duplication and enabling reuse of streaming data across analytics workloads is a key signal for OneLake integration.

Choose Between a Lakehouse, Warehouse, or Eventhouse

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Get data
--> Choose Between a Lakehouse, Warehouse, or Eventhouse

One of the most important architectural decisions a Microsoft Fabric Analytics Engineer must make is selecting the right analytical store for a given workload. For the DP-600 exam, this topic tests your ability to choose between a Lakehouse, Warehouse, or Eventhouse based on data type, query patterns, latency requirements, and user personas.

Overview of the Three Options

Microsoft Fabric provides three primary analytics storage and query experiences:

OptionPrimary Purpose
LakehouseFlexible analytics on files and tables using Spark and SQL
WarehouseEnterprise-grade SQL analytics and BI reporting
EventhouseReal-time and near-real-time analytics on streaming data

Understanding why and when to use each is critical for DP-600 success.

Lakehouse

What Is a Lakehouse?

A Lakehouse combines the flexibility of a data lake with the structure of a data warehouse. Data is stored in Delta Lake format in OneLake and can be accessed using both Spark and SQL.

When to Choose a Lakehouse

Choose a Lakehouse when you need:

  • Flexible schema (schema-on-read or schema-on-write)
  • Support for data engineering and data science
  • Access to raw, curated, and enriched data
  • Spark-based transformations and notebooks
  • Mixed workloads (batch analytics, exploration, ML)

Key Characteristics

  • Supports files and tables
  • Uses Spark SQL and T-SQL endpoints
  • Ideal for ELT and advanced transformations
  • Easy integration with notebooks and pipelines

Exam signal words: flexible, raw data, Spark, data science, experimentation

Warehouse

What Is a Warehouse?

A Warehouse is a fully managed, SQL-first analytical store optimized for business intelligence and reporting. It enforces schema-on-write and provides a traditional relational experience.

When to Choose a Warehouse

Choose a Warehouse when you need:

  • Strong SQL-based analytics
  • High-performance reporting
  • Well-defined schemas and governance
  • Centralized enterprise BI
  • Compatibility with Power BI Import or DirectQuery

Key Characteristics

  • T-SQL only (no Spark)
  • Optimized for structured data
  • Best for star/snowflake schemas
  • Familiar experience for SQL developers

Exam signal words: enterprise BI, reporting, structured, governed, SQL-first

Eventhouse

What Is an Eventhouse?

An Eventhouse is optimized for real-time and streaming analytics, built on KQL (Kusto Query Language). It is designed to handle high-velocity event data.

When to Choose an Eventhouse

Choose an Eventhouse when you need:

  • Near-real-time or real-time analytics
  • Streaming data ingestion
  • Operational or telemetry analytics
  • Event-based dashboards and alerts

Key Characteristics

  • Uses KQL for querying
  • Integrates with Eventstreams
  • Handles massive ingestion rates
  • Optimized for time-series data

Exam signal words: streaming, telemetry, IoT, real-time, events

Choosing the Right Option (Exam-Critical)

The DP-600 exam often presents scenarios where multiple options could work, but only one best fits the requirements.

Decision Matrix

RequirementBest Choice
Raw + curated dataLakehouse
Complex Spark transformationsLakehouse
Enterprise BI reportingWarehouse
Strong governance and schemasWarehouse
Streaming or telemetry dataEventhouse
Near-real-time dashboardsEventhouse
SQL-only usersWarehouse
Data science workloadsLakehouse

Common Exam Scenarios

You may be asked to:

  • Choose a storage type for a new analytics solution
  • Migrate from traditional systems to Fabric
  • Support both engineers and analysts
  • Enable real-time monitoring
  • Balance governance with flexibility

Always identify:

  1. Data type (batch vs streaming)
  2. Latency requirements
  3. User personas
  4. Query language
  5. Governance needs

Best Practices to Remember

  • Use Lakehouse as a flexible foundation for analytics
  • Use Warehouse for polished, governed BI solutions
  • Use Eventhouse for real-time operational insights
  • Avoid forcing one option to handle all workloads
  • Let business requirements—not familiarity—drive the choice

Key Takeaway
For the DP-600 exam, choosing between a Lakehouse, Warehouse, or Eventhouse is about aligning data characteristics and access patterns with the right Fabric experience. Lakehouses provide flexibility, Warehouses deliver enterprise BI performance, and Eventhouses enable real-time analytics. The correct answer is almost always the one that best fits the scenario constraints.

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions, with the below possible association:
    • Spark, raw, experimentationLakehouse
    • Enterprise BI, governed, SQL reportingWarehouse
    • Streaming, telemetry, real-timeEventhouse
  • Expect scenario-based questions rather than direct definitions

1. Which Microsoft Fabric component is BEST suited for flexible analytics on both files and tables using Spark and SQL?

A. Warehouse
B. Eventhouse
C. Lakehouse
D. Semantic model

Correct Answer: C

Explanation:
A Lakehouse stores data in Delta format in OneLake and supports both Spark and SQL, making it ideal for flexible analytics across files and tables.

2. A team of data scientists needs to experiment with raw and curated data using notebooks. Which option should they choose?

A. Warehouse
B. Eventhouse
C. Semantic model
D. Lakehouse

Correct Answer: D

Explanation:
Lakehouses are designed for data engineering and data science workloads, offering Spark-based notebooks and flexible schema handling.

3. Which option is MOST appropriate for enterprise BI reporting with well-defined schemas and strong governance?

A. Lakehouse
B. Warehouse
C. Eventhouse
D. OneLake

Correct Answer: B

Explanation:
Warehouses are SQL-first, schema-on-write systems optimized for structured data, governance, and high-performance BI reporting.

4. A solution must support near-real-time analytics on streaming IoT telemetry data. Which Fabric component should be used?

A. Lakehouse
B. Warehouse
C. Eventhouse
D. Dataflow Gen2

Correct Answer: C

Explanation:
Eventhouses are optimized for high-velocity streaming data and real-time analytics using KQL.

5. Which query language is primarily used to analyze data in an Eventhouse?

A. T-SQL
B. Spark SQL
C. DAX
D. KQL

Correct Answer: D

Explanation:
Eventhouses are built on KQL (Kusto Query Language), which is optimized for querying event and time-series data.

6. A business analytics team requires fast dashboard performance and is familiar only with SQL. Which option best meets this requirement?

A. Lakehouse
B. Warehouse
C. Eventhouse
D. Spark notebook

Correct Answer: B

Explanation:
Warehouses provide a traditional SQL experience optimized for BI dashboards and reporting performance.

7. Which characteristic BEST distinguishes a Lakehouse from a Warehouse?

A. Lakehouses support Power BI
B. Warehouses store data in OneLake
C. Lakehouses support Spark-based processing
D. Warehouses cannot be governed

Correct Answer: C

Explanation:
Lakehouses uniquely support Spark-based processing, enabling advanced transformations and data science workloads.

8. A solution must store structured batch data and unstructured files in the same analytical store. Which option should be selected?

A. Warehouse
B. Eventhouse
C. Semantic model
D. Lakehouse

Correct Answer: D

Explanation:
Lakehouses support both structured tables and unstructured or semi-structured files within the same environment.

9. Which scenario MOST strongly indicates the need for an Eventhouse?

A. Monthly financial reporting
B. Slowly changing dimension modeling
C. Real-time operational monitoring
D. Ad hoc SQL analysis

Correct Answer: C

Explanation:
Eventhouses are designed for real-time analytics on streaming data, making them ideal for operational monitoring scenarios.

10. When choosing between a Lakehouse, Warehouse, or Eventhouse on the DP-600 exam, which factor is MOST important?

A. Personal familiarity with the tool
B. The default Fabric option
C. Data characteristics and latency requirements
D. Workspace size

Correct Answer: C

Explanation:
DP-600 emphasizes selecting the correct component based on data type (batch vs streaming), latency needs, user personas, and governance—not personal preference.

Configure Direct Lake, including default fallback and refresh behavior

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Implement and manage semantic models (25-30%)
--> Optimize enterprise-scale semantic models
--> Configure Direct Lake, including default fallback and refresh behavior

Overview

Direct Lake is a storage and connectivity mode in Microsoft Fabric semantic models that enables Power BI to query data directly from OneLake without importing data into VertiPaq or sending queries back to the data source (as in DirectQuery). It is designed to deliver near–Import performance with DirectQuery-like freshness, making it a key feature for enterprise-scale analytics.

For the DP-600 exam, you are expected to understand:

  • How Direct Lake works
  • When and why fallback occurs
  • How default fallback behavior is configured
  • How refresh behaves in Direct Lake models
  • Common performance and design considerations

How Direct Lake Works

In Direct Lake mode:

  • Data resides in Delta tables stored in OneLake (typically from a Lakehouse or Warehouse).
  • The semantic model reads Parquet/Delta files directly, bypassing data import.
  • Metadata and file statistics are cached to optimize query performance.
  • Queries are executed without duplicating data into VertiPaq storage.

This architecture reduces data duplication while still enabling fast, interactive analytics.


Default Fallback Behavior

What Is Direct Lake Fallback?

Fallback occurs when a query or operation cannot be executed using Direct Lake. In these cases, the semantic model automatically falls back to another mode to ensure the query still returns results.

Depending on configuration, fallback may occur to:

  • DirectQuery, or
  • Import (VertiPaq), if data is available

Fallback is automatic and transparent to report users unless explicitly restricted.


Common Causes of Fallback

Direct Lake fallback can be triggered by:

  • Unsupported DAX functions or expressions
  • Unsupported data types in Delta tables
  • Complex model features (certain calculation patterns, security scenarios)
  • Queries that cannot be resolved efficiently using file-based access
  • Temporary unavailability of OneLake files

Understanding these triggers is important for diagnosing performance issues.


Configuring Default Fallback Behavior

In Fabric semantic model settings, you can configure:

  • Allow fallback (default) – Ensures queries continue to work even when Direct Lake is not supported.
  • Disable fallback – Queries fail instead of falling back, which is useful for enforcing performance expectations or testing Direct Lake compatibility.

From an exam perspective:

  • Allowing fallback prioritizes reliability
  • Disabling fallback prioritizes predictability and performance validation

Refresh Behavior in Direct Lake Models

Do Direct Lake Models Require Refresh?

Unlike Import mode:

  • Direct Lake does not require scheduled data refresh to reflect new data in OneLake.
  • New or updated Delta files are automatically visible to the semantic model.

However, metadata refreshes are still relevant.


Types of Refresh in Direct Lake

  1. Metadata Refresh
    • Updates table schemas, partitions, and statistics
    • Required when:
      • Columns are added or removed
      • Table structures change
    • Lightweight compared to Import refresh
  2. Hybrid Scenarios
    • If fallback to Import is enabled and used, those imported parts do require refresh
    • Mixed behavior may exist in composite or fallback-heavy models

Impact of Refresh on Performance

  • No large-scale data movement during refresh
  • Faster model readiness after schema changes
  • Reduced refresh windows compared to Import models
  • Lower memory pressure in capacity

This makes Direct Lake especially suitable for large, frequently updated datasets.


Performance and Design Considerations

To optimize Direct Lake usage:

  • Use supported Delta table features and data types
  • Keep models simple and star-schema based
  • Avoid unnecessary bidirectional relationships
  • Monitor fallback behavior using performance tools
  • Test critical DAX measures for Direct Lake compatibility

From an exam standpoint, expect scenario-based questions asking you to choose Direct Lake and configure fallback appropriately for scale, freshness, and reliability.


When to Use Direct Lake

Direct Lake is best suited for:

  • Large datasets stored in OneLake
  • Near-real-time analytics
  • Enterprise models that need both performance and freshness
  • Organizations standardizing on Fabric Lakehouse or Warehouse architectures

Key DP-600 Takeaways

  • Direct Lake queries Delta tables directly in OneLake
  • Default fallback ensures query continuity when Direct Lake isn’t supported
  • Fallback behavior can be enabled or disabled
  • Data refresh is not required, but metadata refresh still matters
  • Understanding fallback and refresh behavior is critical for enterprise-scale optimization

DP-600 Exam Tip 💡

Expect scenario-based questions where you must decide:

  • Whether to enable or disable fallback
  • How refresh behaves after schema changes
  • Why a query is falling back unexpectedly

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

1. What is the primary benefit of using Direct Lake mode in a Fabric semantic model?

A. It fully imports data into VertiPaq for maximum compression
B. It queries Delta tables in OneLake directly without data import
C. It sends all queries back to the source system
D. It eliminates the need for semantic models

Correct Answer: B

Explanation:
Direct Lake reads Delta/Parquet files directly from OneLake, avoiding both data import (Import mode) and source query execution (DirectQuery), enabling near-Import performance with fresher data.


2. When does a Direct Lake semantic model fall back to another query mode?

A. When scheduled refresh fails
B. When unsupported features or queries are encountered
C. When the dataset exceeds 1 GB
D. When row-level security is enabled

Correct Answer: B

Explanation:
Fallback occurs when a query or model feature is not supported by Direct Lake, such as certain DAX expressions or unsupported data types.


3. What is the default behavior of Direct Lake when a query cannot be executed in Direct Lake mode?

A. The query fails immediately
B. The query retries using Import mode only
C. The query automatically falls back to another supported mode
D. The semantic model is disabled

Correct Answer: C

Explanation:
By default, Direct Lake allows fallback to ensure query reliability. This allows reports to continue functioning even if Direct Lake cannot handle a specific request.


4. Why might an organization choose to disable fallback in a Direct Lake semantic model?

A. To reduce OneLake storage costs
B. To enforce consistent Direct Lake performance and detect incompatibilities
C. To allow automatic data imports
D. To improve data refresh frequency

Correct Answer: B

Explanation:
Disabling fallback ensures queries only run in Direct Lake mode. This is useful for performance validation and preventing unexpected query behavior.


5. Which action typically requires a metadata refresh in a Direct Lake semantic model?

A. Adding new rows to a Delta table
B. Updating existing fact table values
C. Adding a new column to a Delta table
D. Running a Power BI report

Correct Answer: C

Explanation:
Schema changes such as adding or removing columns require a metadata refresh so the semantic model can recognize structural changes.


6. How does Direct Lake handle new data written to Delta tables in OneLake?

A. Data is visible only after a scheduled refresh
B. Data is visible automatically without data refresh
C. Data is visible only after manual import
D. Data is cached permanently

Correct Answer: B

Explanation:
Direct Lake reads data directly from OneLake, so new or updated data becomes available without needing a traditional Import refresh.


7. Which scenario is MOST likely to cause Direct Lake fallback?

A. Simple SUM aggregation on a fact table
B. Querying a supported Delta table
C. Using unsupported DAX functions in a measure
D. Filtering data using slicers

Correct Answer: C

Explanation:
Certain complex or unsupported DAX functions can force fallback because Direct Lake cannot execute them efficiently using file-based access.


8. What happens if fallback is disabled and a query cannot be executed in Direct Lake mode?

A. The query automatically switches to DirectQuery
B. The query fails and returns an error
C. The semantic model imports the data
D. The model switches to Import mode permanently

Correct Answer: B

Explanation:
When fallback is disabled, unsupported queries fail instead of switching modes, making incompatibilities more visible during testing.


9. Which statement about refresh behavior in Direct Lake models is TRUE?

A. Full data refresh is always required
B. Direct Lake models do not support refresh
C. Only metadata refresh may be required
D. Refresh behaves the same as Import mode

Correct Answer: C

Explanation:
Direct Lake does not require full data refreshes because it reads data directly from OneLake. Metadata refresh is needed only for structural changes.


10. Why is Direct Lake well suited for enterprise-scale semantic models?

A. It eliminates the need for Delta tables
B. It supports unlimited bidirectional relationships
C. It combines near-Import performance with fresh data access
D. It forces all data into memory

Correct Answer: C

Explanation:
Direct Lake offers high performance without importing data, making it ideal for large datasets that require frequent updates and scalable analytics.

Choose Between Direct Lake on OneLake and Direct Lake on SQL Endpoints

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Implement and manage semantic models (25-30%)
--> Optimize enterprise-scale semantic models
--> Choose between Direct Lake on OneLake and Direct Lake on SQL endpoints

In Microsoft Fabric, Direct Lake is a high-performance semantic model storage mode that allows Power BI and Fabric semantic models to query data directly from OneLake without importing it into VertiPaq. When implementing Direct Lake, you must choose where the semantic model reads from, either:

  • Direct Lake on OneLake
  • Direct Lake on SQL endpoints

Understanding the differences, trade-offs, and use cases for each option is critical for optimizing enterprise-scale semantic models, and this topic appears explicitly in the DP-600 exam blueprint.


Direct Lake on OneLake

What It Is

Direct Lake on OneLake connects the semantic model directly to Delta tables stored in OneLake, bypassing SQL engines entirely. Queries operate directly on Parquet/Delta files using the Fabric Direct Lake engine.

Key Characteristics

  • Reads Delta tables directly from OneLake
  • No dependency on a SQL query engine
  • Near-Import performance with zero data duplication
  • Minimal latency between data ingestion and reporting
  • Requires supported Delta table structures and data types

Advantages

  • Best performance for large-scale analytics
  • Always reflects the latest data written to OneLake
  • Eliminates Import refresh overhead
  • Ideal for lakehouse-centric architectures

Limitations

  • Some complex DAX patterns may cause fallback
  • Requires schema compatibility with Direct Lake
  • Less flexibility for SQL-based transformations

Typical Use Cases

  • Enterprise lakehouse analytics
  • High-volume fact tables
  • Near-real-time reporting
  • Fabric-native data pipelines

Direct Lake on SQL Endpoints

What It Is

Direct Lake on SQL endpoints connects the semantic model to the SQL analytics endpoint of a Lakehouse or Warehouse, while still using Direct Lake storage mode behind the scenes.

Instead of reading files directly, the semantic model relies on the SQL endpoint to expose the data.

Key Characteristics

  • Queries go through the SQL endpoint
  • Still benefits from Direct Lake storage
  • Enables SQL views and transformations
  • Slightly higher latency than pure OneLake access

Advantages

  • Supports SQL-based modeling (views, joins, calculated columns)
  • Easier integration with existing SQL logic
  • Familiar experience for SQL-first teams
  • Useful when business logic is already defined in SQL

Limitations

  • Additional query layer may impact performance
  • Less efficient than direct file access
  • SQL endpoint availability becomes a dependency

Typical Use Cases

  • Organizations with strong SQL development practices
  • Reuse of existing SQL views and transformations
  • Gradual migration from Warehouse or SQL models
  • Mixed BI and ad-hoc SQL workloads

Key Comparison Summary

AspectDirect Lake on OneLakeDirect Lake on SQL Endpoint
Data accessDirect file accessVia SQL analytics endpoint
PerformanceHighestSlightly lower
SQL dependencyNoneRequired
Schema flexibilityLowerHigher
Transformation styleLakehouse / SparkSQL-based
Ideal forScale & performanceSQL reuse & flexibility

Choosing Between the Two (Exam-Focused Guidance)

On the DP-600 exam, questions typically focus on architectural intent and performance optimization:

Choose Direct Lake on OneLake when:

  • Performance is the top priority
  • Data is already modeled in Delta tables
  • You want the simplest, most scalable architecture
  • Near-real-time analytics are required

Choose Direct Lake on SQL endpoints when:

  • You need SQL views or transformations
  • Existing logic already exists in SQL
  • Teams are more comfortable with SQL than Spark
  • Some flexibility is preferred over maximum performance

Exam Tip 💡

If a question emphasizes:

  • Maximum performance, minimal latency, or scalability/large-scale analyticsDirect Lake on OneLake
  • SQL views, SQL transformations, or SQL reuseDirect Lake on SQL endpoints

Expect scenario-based questions where both options are technically valid, but only one best aligns with the business and performance requirements.


Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

Question 1

A company has Delta tables stored in OneLake and wants the lowest possible query latency for Power BI reports without using SQL views. Which option should they choose?

A. Import mode
B. DirectQuery on SQL endpoint
C. Direct Lake on SQL endpoint
D. Direct Lake on OneLake

Correct Answer: D

Explanation:
Direct Lake on OneLake reads Delta tables directly from OneLake without a SQL layer, delivering the best performance and lowest latency.


Question 2

Which requirement would most strongly favor Direct Lake on SQL endpoints over Direct Lake on OneLake?

A. Maximum performance
B. Real-time data visibility
C. Use of SQL views for business logic
D. Minimal infrastructure dependencies

Correct Answer: C

Explanation:
Direct Lake on SQL endpoints allows semantic models to consume SQL views and transformations, making it ideal when business logic is defined in SQL.


Question 3

What is a key architectural difference between Direct Lake on OneLake and Direct Lake on SQL endpoints?

A. Only OneLake supports Delta tables
B. SQL endpoints require data import
C. OneLake access bypasses the SQL engine
D. SQL endpoints cannot be used with semantic models

Correct Answer: C

Explanation:
Direct Lake on OneLake reads Delta files directly from storage, while SQL endpoints introduce an additional SQL query layer.


Question 4

A Fabric semantic model uses Direct Lake on OneLake. Under which condition might it fallback to DirectQuery?

A. The model contains calculated columns
B. The dataset exceeds 1 TB
C. The Delta table schema is unsupported
D. The SQL endpoint is unavailable

Correct Answer: C

Explanation:
If the Delta table schema or data types are not supported by Direct Lake, Fabric automatically falls back to DirectQuery.


Question 5

Which scenario is best suited for Direct Lake on SQL endpoints?

A. High-volume streaming telemetry
B. SQL-first team reusing existing warehouse views
C. Near-real-time dashboards on raw lake data
D. Large fact tables optimized for scan performance

Correct Answer: B

Explanation:
Direct Lake on SQL endpoints is ideal when teams rely on SQL views and want to reuse existing SQL logic.


Question 6

Which statement about performance is most accurate?

A. SQL endpoints always outperform OneLake
B. OneLake always requires Import mode
C. Direct Lake on OneLake typically offers better performance
D. Direct Lake on SQL endpoints does not use Direct Lake

Correct Answer: C

Explanation:
Direct Lake on OneLake avoids the SQL layer, resulting in faster query execution in most scenarios.


Question 7

A Power BI model must reflect new data immediately after ingestion into OneLake. Which option best supports this requirement?

A. Import mode
B. DirectQuery
C. Direct Lake on SQL endpoint
D. Direct Lake on OneLake

Correct Answer: D

Explanation:
Direct Lake on OneLake reads data directly from Delta tables and reflects changes immediately without refresh.


Question 8

Which dependency exists when using Direct Lake on SQL endpoints that does not exist with Direct Lake on OneLake?

A. Delta Lake support
B. VertiPaq compression
C. SQL analytics endpoint availability
D. Semantic model compatibility

Correct Answer: C

Explanation:
Direct Lake on SQL endpoints depends on the SQL analytics endpoint being available, while OneLake access does not.


Question 9

From a DP-600 exam perspective, which factor most often determines the correct choice between these two options?

A. Dataset size alone
B. Whether SQL transformations are required
C. Number of report users
D. Power BI license type

Correct Answer: B

Explanation:
Exam questions typically focus on whether SQL logic (views, joins, transformations) is needed, which drives the choice.


Question 10

You are designing an enterprise semantic model focused on scalability and minimal complexity. The data is already curated as Delta tables. What is the best choice?

A. Import mode
B. DirectQuery on SQL endpoint
C. Direct Lake on SQL endpoint
D. Direct Lake on OneLake

Correct Answer: D

Explanation:
Direct Lake on OneLake offers the simplest architecture with the highest scalability and performance when Delta tables are already prepared.


Implement item-level access controls in Microsoft Fabric

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Maintain a data analytics solution
--> Implement security and governance
--> Implement item-level access controls

To Do:
Complete the related module for this topic in the Microsoft Learn course: Secure data access in Microsoft Fabric

Item-level access controls in Microsoft Fabric determine who can access or interact with specific items inside a workspace, rather than the entire workspace. Items include reports, semantic models, Lakehouses, Warehouses, notebooks, pipelines, dashboards, and other Fabric artifacts.

For the DP-600 exam, it’s important to understand how item-level permissions differ from workspace roles, when to use them, and how they interact with data-level security such as RLS.

What Are Item-Level Access Controls?

Item-level access controls:

  • Apply to individual Fabric items
  • Are more granular than workspace-level roles
  • Allow selective sharing without granting broad workspace access

They are commonly used when:

  • Users need access to one report or dataset, not the whole workspace
  • Consumers should view content without seeing development artifacts
  • External or business users need limited access

Common Items That Support Item-Level Permissions

In Microsoft Fabric, item-level permissions can be applied to:

  • Power BI reports
  • Semantic models (datasets)
  • Dashboards
  • Lakehouses and Warehouses
  • Notebooks and pipelines (via workspace + item context)

The most frequently tested scenarios in DP-600 involve reports and semantic models.

Sharing Reports and Dashboards

Report Sharing

Reports can be shared directly with users or groups.

When you share a report:

  • Users can be granted View or Reshare permissions
  • The report appears in the recipient’s “Shared with me” section
  • Access does not automatically grant workspace access

Exam considerations

  • Sharing a report does not grant edit permissions
  • Sharing does not bypass data-level security (RLS still applies)
  • Users must also have access to the underlying semantic model

Semantic Model (Dataset) Permissions

Semantic models support explicit permissions that control how users interact with data.

Common permissions include:

  • Read – View and query the model
  • Build – Create reports using the model
  • Write – Modify the model (typically for owners)
  • Reshare – Share the model with others

Typical use cases

  • Allow analysts to build their own reports (Build permission)
  • Allow consumers to view reports without building new ones
  • Restrict direct querying of datasets

Exam tips

  • Build permission is required for “Analyze in Excel” and report creation
  • RLS and OLS are enforced at the semantic model level
  • Dataset permissions can be granted independently of report sharing

Item-Level Access vs Workspace-Level Roles

Understanding this distinction is critical for the exam.

FeatureWorkspace-Level AccessItem-Level Access
ScopeEntire workspaceSingle item
Typical rolesAdmin, Member, Contributor, ViewerView, Build, Reshare
Best forTeam collaborationTargeted sharing
GranularityCoarseFine-grained

Key exam insight:
Item-level access does not override workspace permissions. A user cannot edit an item if their workspace role is Viewer, even if the item is shared.

Interaction with Data-Level Security

Item-level access works together with:

  • Row-Level Security (RLS)
  • Column-Level Security (CLS)
  • Object-Level Security (OLS)

Important behaviors:

  • Sharing a report does not expose restricted rows or columns
  • RLS is evaluated based on the user’s identity
  • Item access only determines whether a user can query the item, not what data they see

Common Exam Scenarios

You may encounter questions such as:

  • A user can see a report but cannot build a new one → missing Build permission
  • A user has report access but sees no data → likely RLS
  • A business user needs access to one report only → item-level sharing, not workspace access
  • An analyst can’t query a dataset in Excel → lacks Build permission

Best Practices to Remember

  • Use item-level access for consumers and ad-hoc sharing
  • Use workspace roles for development teams
  • Assign permissions to Entra ID security groups when possible
  • Always pair item access with appropriate semantic model permissions

Key Exam Takeaways

  • Item-level access controls provide fine-grained security
  • Reports and semantic models are the most tested items
  • Build permission is critical for self-service analytics
  • Item-level access complements, but does not replace, workspace roles

Exam Tips

  • Think “Can they see the object at all?”
  • Combine:
    • Workspace roles → broad access
    • Item-level access → fine-grained control
    • RLS/CLS → data-level restrictions
  • Expect scenarios involving:
    • Preventing access to lakehouses
    • Separating authors from consumers
    • Protecting production assets
  • If a question asks who can view or build from a specific report or dataset without granting workspace access, the correct answer almost always involves item-level access controls.

Practice Questions:

Question 1 (Single choice)

What is the PRIMARY purpose of item-level access controls in Microsoft Fabric?

A. Control which rows a user can see
B. Control which columns a user can see
C. Control access to specific workspace items
D. Control DAX query execution speed

Correct Answer: C

Explanation:

  • Item-level access controls determine who can access specific items (lakehouses, warehouses, semantic models, notebooks, reports).
  • Row-level and column-level security are semantic model features, not item-level controls.

Question 2 (Scenario-based)

A user should be able to view reports but must NOT access the underlying lakehouse or semantic model. Which control should you use?

A. Workspace Viewer role
B. Item-level permissions on the lakehouse and semantic model
C. Row-level security
D. Column-level security

Correct Answer: B

Explanation:

  • Item-level access allows you to block direct access to specific items even when the user has workspace access.
  • Viewer role alone may still expose certain metadata.

Question 3 (Multi-select)

Which Fabric items support item-level access control? (Select all that apply.)

A. Lakehouses
B. Warehouses
C. Semantic models
D. Power BI reports

Correct Answers: A, B, C, D

Explanation:

  • Item-level access can be applied to most Fabric artifacts, including data storage, models, and reports.
  • This allows fine-grained governance beyond workspace roles.

Question 4 (Scenario-based)

You want data engineers to manage a lakehouse, but analysts should only consume a semantic model built on top of it. What is the BEST approach?

A. Assign Analysts as Workspace Viewers
B. Deny item-level access to the lakehouse for Analysts
C. Use Row-Level Security only
D. Disable SQL endpoint access

Correct Answer: B

Explanation:

  • Analysts can access the semantic model while being explicitly denied access to the lakehouse via item-level permissions.
  • This is a common enterprise pattern in Fabric.

Question 5 (Single choice)

Which permission is required for a user to edit or manage an item at the item level?

A. Read
B. View
C. Write
D. Execute

Correct Answer: C

Explanation:

  • Write permissions allow editing, updating, or managing an item.
  • Read/View permissions are consumption-only.

Question 6 (Scenario-based)

A user can see a report but receives an error when trying to connect to its semantic model using Power BI Desktop. Why?

A. XMLA endpoint is disabled
B. They lack item-level permission on the semantic model
C. The dataset is in Direct Lake mode
D. The report uses DirectQuery

Correct Answer: B

Explanation:

  • Viewing a report does not automatically grant access to the underlying semantic model.
  • Item-level access must explicitly allow it.

Question 7 (Multi-select)

Which statements about workspace access vs item-level access are TRUE? (Select all that apply.)

A. Workspace access automatically grants access to all items
B. Item-level access can further restrict workspace permissions
C. Item-level access overrides Row-Level Security
D. Workspace roles are broader than item-level permissions

Correct Answers: B, D

Explanation:

  • Workspace roles define baseline access.
  • Item-level access can tighten restrictions on specific assets.
  • RLS still applies within semantic models.

Question 8 (Scenario-based)

You want to prevent accidental modification of a production semantic model while still allowing users to query it. What should you do?

A. Assign Viewer role at the workspace level
B. Grant Read permission at the item level
C. Disable the SQL endpoint
D. Remove the semantic model

Correct Answer: B

Explanation:

  • Read item-level permission allows querying and consumption without edit rights.
  • This is safer than relying on workspace roles alone.

Question 9 (Single choice)

Which security layer is MOST appropriate for restricting access to entire objects rather than data within them?

A. Row-level security
B. Column-level security
C. Object-level security
D. Item-level access control

Correct Answer: D

Explanation:

  • Item-level access controls whether a user can access an object at all.
  • Object-level security applies inside semantic models.

Question 10 (Scenario-based)

A compliance requirement states that only approved users can access notebooks in a workspace. What is the BEST solution?

A. Place notebooks in a separate workspace
B. Apply item-level access controls to notebooks
C. Use Row-Level Security
D. Restrict workspace Viewer access

Correct Answer: B

Explanation:

  • Item-level access allows targeted restriction without restructuring workspaces.
  • This is the preferred Fabric governance approach.

Perform impact analysis of downstream dependencies from lakehouses, data warehouses, dataflows, and semantic models in Microsoft Fabric

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Maintain a data analytics solution
--> Maintain the analytics development lifecycle
--> Perform impact analysis of downstream dependencies from lakehouses,
data warehouses, dataflows, and semantic models

Impact analysis in Microsoft Fabric helps analytics engineers understand how changes to upstream data assets affect downstream items such as datasets, reports, dashboards, notebooks, and pipelines. It is a critical lifecycle practice that reduces the risk of breaking analytics solutions when making schema, logic, or data changes.

For the DP-600 exam, you should understand what impact analysis is, which Fabric tools support it, what dependencies are tracked, and how to use it in real-world lifecycle scenarios.

What Is Impact Analysis?

Impact analysis answers the question:

“If I change or delete this item, what else will be affected?”

It allows you to:

  • Identify downstream dependencies
  • Assess risk before making changes
  • Communicate potential impacts to stakeholders
  • Support safe development and deployment practices

Impact analysis is observational and informational—it does not enforce controls.

Where Impact Analysis Is Used in Fabric

Impact analysis applies across many Fabric items, including:

  • Lakehouses
  • Data Warehouses
  • Dataflows Gen2
  • Semantic models
  • Reports and dashboards
  • Notebooks and pipelines

These items form a connected analytics graph, which Fabric can visualize.

Lineage View: The Core Tool for Impact Analysis

The primary tool for impact analysis in Fabric is Lineage View.

What Lineage View Shows

  • Upstream data sources
  • Transformations and processing steps
  • Downstream consumers
  • Relationships between items

Lineage view provides a visual map of dependencies across workloads.

Impact Analysis by Asset Type

Lakehouses

Changing a Lakehouse can impact:

  • Notebooks reading tables
  • Semantic models using Direct Lake
  • Dataflows writing or reading data
  • Reports built on dependent models

Common risk: Dropping or renaming a column.

Data Warehouses

Warehouse changes may affect:

  • Views and SQL queries
  • Semantic models using DirectQuery
  • Reports and dashboards
  • External tools

Exam insight: Schema changes are a common source of downstream failures.

Dataflows Gen2

Dataflows often sit between raw data and analytics.

Changes can impact:

  • Lakehouses or Warehouses they load into
  • Semantic models consuming curated tables
  • Pipelines orchestrating refreshes

Semantic Models

Semantic models are among the most sensitive assets.

Changes may affect:

  • Reports and dashboards
  • Excel workbooks
  • Composite models
  • End-user self-service analytics

Exam note: Removing measures or renaming fields is high risk.

How to Perform Impact Analysis (High Level)

  1. Select the item (Lakehouse, Warehouse, Dataflow, or Semantic Model)
  2. Open Lineage view
  3. Review downstream dependencies
  4. Identify:
    • Reports
    • Datasets
    • Pipelines
    • Other dependent items
  5. Communicate or mitigate risk before making changes

Impact Analysis in the Development Lifecycle

Impact analysis is typically performed:

  • Before deploying changes
  • Before modifying schemas
  • Before deleting items
  • During troubleshooting

It supports:

  • Safe Git commits
  • Controlled pipeline deployments
  • Production stability

Common Exam Scenarios

You may see questions such as:

  • A column change breaks multiple reports → impact analysis was skipped
  • An engineer needs to know which reports use a dataset → lineage view
  • A Lakehouse schema update affects downstream models → review dependencies
  • A dataset should not be modified due to executive reports → high downstream impact

Example:

Before removing a table from a semantic model, what should you do?
Correct concept: Perform impact analysis using lineage view.

Impact Analysis vs Deployment Pipelines

These concepts are related but distinct.

FeatureImpact AnalysisDeployment Pipelines
PurposeRisk assessmentControlled promotion
EnforcedNoYes
TimingBefore changesDuring deployment
ToolLineage viewPipeline UI

Best Practices to Remember

  • Always check lineage before schema changes
  • Pay extra attention to semantic models and certified items
  • Communicate impacts to report owners
  • Pair impact analysis with:
    • Version control
    • Development pipelines
    • Endorsements and certification

Key Exam Takeaways

  • Impact analysis identifies downstream dependencies
  • Lineage view is the primary tool in Fabric
  • Applies to Lakehouses, Warehouses, Dataflows, and Semantic Models
  • Supports safe lifecycle and governance practices
  • A common scenario-based exam topic

Final Exam Tip

  • If a question asks what will break if I change this, the answer is impact analysis via lineage view.
  • If it asks how to safely move changes, the answer is pipelines or Git.
  • Expect questions that test:
    • When to perform impact analysis
    • Which items are affected by changes
    • Operational decision-making before deployments
  • Common traps:
    • Confusing impact analysis with lineage documentation
    • Assuming Fabric blocks breaking changes automatically
    • Forgetting semantic models are often the most impacted layer

Practice Questions

Question 1 (Single choice)

What is the PRIMARY purpose of impact analysis in Microsoft Fabric?

A. Improve query performance
B. Identify downstream objects affected by a change
C. Enforce data security policies
D. Reduce data refresh frequency

Correct Answer: B

Explanation:
Impact analysis helps you understand what items depend on a given artifact, so you can assess the risk of changes.

  • ❌ A: Performance tuning is separate
  • ❌ C: Security is not the focus
  • ❌ D: Refresh tuning is unrelated

Question 2 (Multi-select)

Which Fabric items can be analyzed for downstream dependencies? (Select all that apply.)

A. Lakehouses
B. Data warehouses
C. Dataflows
D. Semantic models

Correct Answers: A, B, C, D

Explanation:
Microsoft Fabric supports dependency tracking across all major analytical artifacts, enabling end-to-end lineage visibility.


Question 3 (Scenario-based)

You plan to rename a column in a lakehouse table. Which Fabric feature should you use FIRST?

A. Version control
B. Deployment pipeline
C. Impact analysis
D. Incremental refresh

Correct Answer: C

Explanation:
Renaming a column may break:

  • Semantic models
  • SQL queries
  • Reports

Impact analysis identifies what will be affected before the change.


Question 4 (Single choice)

Where do you access impact analysis for an item in Fabric?

A. Power BI Desktop
B. Microsoft Purview portal
C. Item settings in the Fabric workspace
D. Azure DevOps

Correct Answer: C

Explanation:
Impact analysis is accessible directly from the item context or settings within a Fabric workspace.

  • ❌ Purview focuses on governance/catalog
  • ❌ DevOps is not used for lineage

Question 5 (Scenario-based)

A dataflow loads data into a lakehouse that feeds multiple semantic models. What does impact analysis show?

A. Only the lakehouse
B. Only the semantic models
C. All downstream dependencies
D. Only refresh schedules

Correct Answer: C

Explanation:
Impact analysis provides a full dependency graph, showing all downstream items affected by changes.


Question 6 (Multi-select)

Which changes typically REQUIRE impact analysis before execution? (Select all that apply.)

A. Dropping columns
B. Renaming tables
C. Changing data types
D. Adding a new report page

Correct Answers: A, B, C

Explanation:
Structural changes can break dependencies. Adding a report page does not affect downstream items.


Question 7 (Scenario-based)

A semantic model is used by several reports and dashboards. What happens if you delete the model without impact analysis?

A. Nothing; reports are cached
B. Reports automatically reconnect
C. Reports and dashboards break
D. Fabric blocks the deletion

Correct Answer: C

Explanation:
Deleting a semantic model removes the data source for:

  • Reports
  • Dashboards

Impact analysis helps prevent such disruptions.


Question 8 (Single choice)

Which view best represents impact analysis results?

A. Tabular grid
B. SQL execution plan
C. Dependency graph
D. DAX query view

Correct Answer: C

Explanation:
Impact analysis is presented as a visual dependency graph, showing upstream and downstream relationships.


Question 9 (Scenario-based)

Which role MOST benefits from performing impact analysis regularly?

A. Report consumers
B. Workspace admins and data engineers
C. End-user analysts
D. External auditors

Correct Answer: B

Explanation:
Admins and engineers are responsible for:

  • Schema changes
  • Deployments
  • Stability

Impact analysis supports safe operational changes.


Question 10 (Multi-select)

Which best practices apply when using impact analysis? (Select all that apply.)

A. Perform before structural changes
B. Use in conjunction with deployment pipelines
C. Skip for minor schema updates
D. Communicate findings to stakeholders

Correct Answers: A, B, D

Explanation:
Impact analysis should:

  • Precede schema changes
  • Inform deployment decisions
  • Be communicated to stakeholders

❌ “Minor” changes can still break dependencies.


Create and Update Reusable Assets, including Power BI template (.pbit) files, Power BI data source (.pbids) files, and shared semantic models in Microsoft Fabric

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Maintain a data analytics solution
--> Maintain the analytics development lifecycle
--> Create and update reusable assets, including Power BI template (.pbit)
files, Power BI data source (.pbids) files, and shared semantic models

Reusable assets are a key lifecycle concept in Microsoft Fabric and Power BI. They enable consistency, scalability, and efficiency by allowing teams to standardize how data is connected, modeled, and visualized across multiple solutions.

For the DP-600 exam, you should understand what reusable assets are, how to create and manage them, and when each type is appropriate.

What Are Reusable Assets?

Reusable assets are analytics artifacts designed to be:

  • Used by multiple users or teams
  • Reapplied across projects
  • Centrally governed and maintained

Common reusable assets include:

  • Power BI template (.pbit) files
  • Power BI data source (.pbids) files
  • Shared semantic models

Power BI Template Files (.pbit)

What Is a PBIT File?

A .pbit file is a Power BI template that contains:

  • Report layout and visuals
  • Data model structure (tables, relationships, measures)
  • Parameters and queries (without data)

It does not include actual data.

When to Use PBIT Files

PBIT files are ideal when:

  • Standardizing report design and metrics
  • Distributing reusable report frameworks
  • Supporting self-service analytics at scale
  • Onboarding new analysts

Creating and Updating PBIT Files

  • Create a report in Power BI Desktop
  • Remove data (if present)
  • Save as Power BI Template (.pbit)
  • Store in source control or shared repository
  • Update centrally and redistribute as needed

Power BI Data Source Files (.pbids)

What Is a PBIDS File?

A .pbids file is a JSON-based file that defines:

  • Data source connection details
  • Server, database, or endpoint information
  • Authentication type (but not credentials)

Opening a PBIDS file launches Power BI Desktop and guides users through connecting to the correct data source.

When to Use PBIDS Files

PBIDS files are useful for:

  • Standardizing data connections
  • Reducing configuration errors
  • Guiding business users to approved sources
  • Supporting governed self-service analytics

Managing PBIDS Files

  • Create manually or export from Power BI Desktop
  • Store centrally (e.g., Git, SharePoint)
  • Update when connection details change
  • Pair with shared semantic models where possible

Shared Semantic Models

What Are Shared Semantic Models?

Shared semantic models are centrally managed datasets that:

  • Define business logic, measures, and relationships
  • Serve as a single source of truth
  • Are reused across multiple reports

They are one of the most important reusable assets in Fabric.

Benefits of Shared Semantic Models

  • Consistent metrics across reports
  • Reduced duplication
  • Centralized governance
  • Better performance and manageability

Managing Shared Semantic Models

Shared semantic models are:

  • Developed by analytics engineers
  • Published to Fabric workspaces
  • Shared using Build permission
  • Governed with:
    • RLS and OLS
    • Sensitivity labels
    • Endorsements (Promoted/Certified)

How These Assets Work Together

A common pattern:

  • PBIDS → Standardizes connection
  • Shared semantic model → Defines logic
  • PBIT → Standardizes report layout

This layered approach is frequently tested in exam scenarios.

Reusable Assets and the Development Lifecycle

Reusable assets support:

  • Faster development
  • Consistent deployments
  • Easier maintenance
  • Scalable self-service analytics

They align naturally with:

  • PBIP projects
  • Git version control
  • Development pipelines
  • XMLA-based automation

Common Exam Scenarios

You may be asked:

  • How to distribute a standardized report template → PBIT
  • How to ensure users connect to the correct data source → PBIDS
  • How to enforce consistent business logic → Shared semantic model
  • How to reduce duplicate datasets → Shared model + Build permission

Example:

Multiple teams need to create reports using the same metrics and layout.
Correct concepts: Shared semantic model and PBIT.

Best Practices to Remember

  • Centralize ownership of shared semantic models
  • Certify trusted reusable assets
  • Store templates and PBIDS files in source control
  • Avoid duplicating business logic in individual reports
  • Pair reusable assets with governance features

Key Exam Takeaways

  • Reusable assets improve consistency and scalability
  • PBIT files standardize report design
  • PBIDS files standardize data connections
  • Shared semantic models centralize business logic
  • All are core lifecycle tools in Fabric

Exam Tips

  • If a question focuses on standardization, reuse, or self-service at scale, think PBIT, PBIDS, and shared semantic models—and choose the one that matches the problem being solved.
  • Expect scenarios that test:
    • When to use PBIT vs PBIDS vs shared semantic models
    • Governance and consistency
    • Enterprise BI scalability
  • Quick memory aid:
    • PBIT = Layout + Model (no data)
    • PBIDS = Connection only
    • Shared model = Logic once, reports many

Practice Questions

Question 1 (Single choice)

What is the PRIMARY purpose of a Power BI template (.pbit) file?

A. Store report data for reuse
B. Share report layout and model structure without data
C. Store credentials securely
D. Enable real-time data refresh

Correct Answer: B

Explanation:
A .pbit file contains:

  • Report layout
  • Semantic model (tables, relationships, measures)
  • No data

It’s used to standardize report creation.


Question 2 (Multi-select)

Which components are included in a Power BI template (.pbit)? (Select all that apply.)

A. Report visuals
B. Data model schema
C. Data source credentials
D. DAX measures

Correct Answers: A, B, D

Explanation:

  • Templates include visuals, schema, relationships, and measures.
  • ❌ Credentials and data are never included.

Question 3 (Scenario-based)

Your organization wants users to quickly connect to approved data sources while preventing incorrect connection strings. Which reusable asset is BEST?

A. PBIX file
B. PBIT file
C. PBIDS file
D. Shared semantic model

Correct Answer: C

Explanation:
PBIDS files:

  • Predefine connection details
  • Guide users to approved data sources
  • Improve governance and consistency

Question 4 (Single choice)

Which statement about Power BI data source (.pbids) files is TRUE?

A. They contain report visuals
B. They contain DAX measures
C. They define connection metadata only
D. They store dataset refresh schedules

Correct Answer: C

Explanation:
PBIDS files only store:

  • Data source type
  • Server/database info
    They do NOT include visuals, data, or logic.

Question 5 (Scenario-based)

You want multiple reports to use the same curated dataset to ensure consistent KPIs. What should you implement?

A. Multiple PBIX files
B. Power BI templates
C. Shared semantic model
D. PBIDS files

Correct Answer: C

Explanation:
A shared semantic model allows:

  • Centralized logic
  • Single source of truth
  • Multiple reports connected via Live/Direct Lake

Question 6 (Multi-select)

Which benefits are provided by shared semantic models? (Select all that apply.)

A. Consistent calculations across reports
B. Reduced duplication of datasets
C. Independent refresh schedules per report
D. Centralized security management

Correct Answers: A, B, D

Explanation:

  • Shared models enforce consistency and reduce maintenance.
  • ❌ Refresh is managed at the model level, not per report.

Question 7 (Scenario-based)

You update a shared semantic model’s calculation logic. What is the impact?

A. Only new reports see the change
B. All connected reports reflect the change
C. Reports must be republished
D. Only the workspace owner sees updates

Correct Answer: B

Explanation:
All reports connected to a shared semantic model automatically reflect changes.


Question 8 (Single choice)

Which reusable asset BEST supports report creation without requiring Power BI Desktop modeling skills?

A. PBIX file
B. PBIT file
C. PBIDS file
D. Shared semantic model

Correct Answer: D

Explanation:
Users can build reports directly on shared semantic models using existing fields and measures.


Question 9 (Scenario-based)

You want to standardize report branding, page layout, and slicers across teams. What should you distribute?

A. PBIDS file
B. Shared semantic model
C. PBIT file
D. XMLA script

Correct Answer: C

Explanation:
PBIT files are ideal for:

  • Visual consistency
  • Reusable layouts
  • Standard filters and slicers

Question 10 (Multi-select)

Which are BEST practices when managing reusable Power BI assets? (Select all that apply.)

A. Store PBIT and PBIDS files in version control
B. Update shared semantic models directly in production without testing
C. Document reusable asset usage
D. Combine shared semantic models with deployment pipelines

Correct Answers: A, C, D

Explanation:
Best practices emphasize:

  • Governance
  • Controlled updates
  • Documentation

❌ Direct production edits increase risk.


Understanding Microsoft Fabric Shortcuts

Microsoft Fabric is a central platform for data and analytics, and one of its powerful features that supports it being an all-in-one platform is Shortcuts. Shortcuts provide a simple way to unify data across multiple locations without duplicating or moving it. This is a big deal because it saves a LOT of time and effort that is usually involved in moving data around.

What Are Shortcuts?

Shortcuts are references (or “pointers”) to data that resides in another storage location. Instead of copying the data into Fabric, a shortcut lets you access and query it as if it were stored locally.

This is especially valuable in today’s data landscape, where data often spans OneLake, Azure Data Lake Storage (ADLS), Amazon S3, or other environments.

Types of Shortcuts

There are 2 types of shortcuts: table shortcuts and file shortcuts

  1. Table Shortcuts
    • Point to existing tables in other Fabric workspaces or external sources.
    • Allow you to query and analyze the table without physically moving it.
  2. File Shortcuts
    • Point to files (e.g., Parquet, CSV, Delta Lake) stored in OneLake or other supported storage systems.
    • Useful for scenarios where files are your system of record, but you want to use them in Fabric experiences like Power BI, Data Engineering, or Data Science.

Benefits of Shortcuts

Shortcuts is a really useful feature, and here are some of its benefits:

  • No Data Duplication: Saves storage costs and avoids data sprawl.
  • Single Source of Truth: Data stays in its original location while being usable across Fabric.
  • Speed and Efficiency: Query and analyze external data in place, without lengthy ETL processes.
  • Flexibility: Works across different storage platforms and Fabric workspaces.

How and Where Shortcuts Can Be Created

  • In OneLake: You can create shortcuts directly in OneLake to link to data from ADLS Gen2, Amazon S3, or other OneLake workspaces.
  • In Fabric Experiences: Whether working in Data Engineering, Data Science, Real-Time Analytics, or Power BI, shortcuts can be created in lakehouses or KQL (Kusto Query Language) databases, and you can use them directly as data in OneLake. Any Fabric service will be able to use them without copying data from the data source.
  • In Workspaces: Shortcuts make it possible to connect across lakehouses stored in different workspaces, breaking down silos within an organization. The shortcuts can be generated from a lakehouse, warehouse, or KQL database.
  • Note that warehouses do not support the creation of shortcuts. However, you can query data stored within other warehouses and lakehouses.

How Shortcuts Can Be Used

  • Cross-Workspace Data Access: Analysts can query data in another team’s workspace without requesting a copy.
  • Data Virtualization: Data scientists can work with files stored in ADLS without having to move them into Fabric.
  • BI and Reporting: Power BI models can use shortcuts to reference external files or tables, enabling consistent reporting without duplication.
  • ETL Simplification: Instead of moving raw files into Fabric, engineers can create shortcuts and build transformations directly on the source.

Common Scenarios

  • A finance team wants to build Power BI reports on data stored by the operations team without moving the data.
  • A data scientist needs access to parquet files in Amazon S3 but prefers to analyze them within Fabric.
  • A company with multiple Fabric workspaces wants to centralize access to shared reference data (like customer or product master data) without replication.

In summary: Microsoft Fabric Shortcuts simplify data access across locations and workspaces. Whether table-based or file-based, they allow organizations to unify data without duplication, streamline analytics, and improve collaboration.

Here is a link to the Microsoft Learn OneLake documentation about Shortcuts. From there you will be able to explore all the Shortcut topics shown in the image below:

Thanks for reading! I hope you found this information useful.

Microsoft Fabric OneLake Catalog – description and links to resources

What is OneLake Catalog?

Microsoft Fabric OneLake Catalog is the next generation, enhanced version of the OneLake Data Hub. It provides a complete solution in a central location for team members (data engineers, data scientists, analysts, business team members, and other stakeholders) to browse, manage, and govern all their data from a single, intuitive location. It provides an intuitive and efficient user interface and truly simplifies and transforms the way we can manage, explore, and utilize content in Fabric. Usage is contextual and it has unified all Fabric item types (including Power BI items) and expanded support to all Fabric item types, integrating experiences, and providing detailed views of data subitems. It is a great tool.

Why use OneLake Catalog?

This tool will make your work within Fabric easier, and it will reduce duplication of items due to improved discoverability, and it will enhance our ability to govern data objects within the platform. So, check out the resources below to learn more.

Here is a link to a detailed Microsoft blog post introducing the OneLake Catalog:

And here is a link to a Microsoft Learn OneLake Catalog overview:

And finally, this is a link to a great, short (less than 5 min) video that gives an overview of the OneLake Catalog:

Thanks for reading! Good luck on your data journey!