Category: Generative AI

AI in the Automotive Industry: How Artificial Intelligence Is Transforming Mobility

“AI in …” series

Artificial Intelligence (AI) is no longer a futuristic concept in the automotive world — it’s already embedded across nearly every part of the industry. From how vehicles are designed and manufactured, to how they’re driven, maintained, sold, and supported, AI is fundamentally reshaping vehicular mobility.

What makes automotive especially interesting is that it combines physical systems, massive data volumes, real-time decision making, and human safety. Few industries, such as healthcare, place higher demands on AI accuracy, reliability, and scale.

Let’s walk through how AI is being applied across the automotive value chain — and why it matters.


1. AI in Vehicle Design and Engineering

Before a single car reaches the road, AI is already at work.

Generative Design

Automakers use AI-driven generative design tools to explore thousands of design variations automatically. Engineers specify constraints like:

  • Weight
  • Strength
  • Material type
  • Cost

The AI proposes optimized designs that humans might never consider — often producing lighter, stronger components.

Business value:

  • Faster design cycles
  • Reduced material usage
  • Improved fuel efficiency or battery range
  • Lower production costs

For example, manufacturers now design lightweight structural parts for EVs using AI, helping extend driving range without compromising safety.

Simulation and Virtual Testing

AI accelerates crash simulations, aerodynamics modeling, and thermal analysis by learning from historical test data. Instead of running every scenario physically (which is expensive and slow), AI predicts outcomes digitally — cutting months from development timelines.


2. Autonomous Driving and Advanced Driver Assistance Systems (ADAS)

This is the most visible application of AI in automotive.

Modern vehicles increasingly rely on AI to understand their surroundings and assist — or fully replace — human drivers.

Perception: Seeing the World

Self-driving systems combine data from:

  • Cameras
  • Radar
  • LiDAR
  • Ultrasonic sensors

AI models interpret this data to identify:

  • Vehicles
  • Pedestrians
  • Lane markings
  • Traffic signs
  • Road conditions

Computer vision and deep learning allow cars to “see” in real time.

Decision Making and Control

Once the environment is understood, AI determines:

  • When to brake
  • When to accelerate
  • How to steer
  • How to merge
  • How to respond to unexpected obstacles

This requires millisecond-level decisions with safety-critical consequences.

ADAS Today

Even if full autonomy is still evolving, AI already powers features such as:

  • Adaptive cruise control
  • Lane-keeping assist
  • Automatic emergency braking
  • Blind-spot monitoring
  • Parking assistance

These systems are quietly reducing accidents and saving lives every day.


3. Predictive Maintenance and Vehicle Health Monitoring

Traditionally, vehicles were serviced on fixed schedules or after something broke.

AI enables a shift toward predictive maintenance.

How It Works

Vehicles continuously generate data from hundreds of sensors:

  • Engine performance
  • Battery health
  • Brake wear
  • Tire pressure
  • Temperature fluctuations

AI models analyze patterns across millions of vehicles to detect early signs of failure.

Instead of reacting to breakdowns, manufacturers and fleet operators can:

  • Predict component failures
  • Schedule maintenance proactively
  • Reduce downtime
  • Lower repair costs

For commercial fleets, this translates directly into operational savings and improved reliability.


4. Smart Manufacturing and Quality Control

Automotive factories are becoming AI-powered production ecosystems.

Computer Vision for Quality Inspection

High-resolution cameras combined with AI inspect parts and assemblies in real time, identifying:

  • Surface defects
  • Misalignments
  • Missing components
  • Paint imperfections

This replaces manual inspection while improving consistency and accuracy.

Robotics and Process Optimization

AI coordinates robotic arms, assembly lines, and material flow to:

  • Optimize production speed
  • Reduce waste
  • Balance workloads
  • Detect bottlenecks

Manufacturers also use AI to forecast demand and dynamically adjust production volumes.

The result: leaner factories, higher quality, and faster delivery.


5. AI in Supply Chain and Logistics

The automotive supply chain is incredibly complex, involving thousands of suppliers worldwide.

AI helps manage this complexity by:

  • Forecasting parts demand
  • Optimizing inventory levels
  • Predicting shipping delays
  • Identifying supplier risks
  • Optimizing transportation routes

During recent global disruptions, companies using AI-driven supply chain analytics recovered faster by anticipating shortages and rerouting sourcing strategies.


6. Personalized In-Car Experiences

Modern vehicles increasingly resemble connected smart devices.

AI enhances the driver and passenger experience through personalization:

  • Voice assistants for navigation and climate control
  • Adaptive seating and mirror positions
  • Personalized infotainment recommendations
  • Driver behavior analysis for comfort and safety

Some systems learn individual driving styles and adjust throttle response, braking sensitivity, and steering feel accordingly.

Over time, your car begins to feel uniquely “yours.”


7. Sales, Marketing, and Customer Engagement

AI doesn’t stop at manufacturing — it also transforms how vehicles are sold and supported.

Smarter Marketing

Automakers use AI to analyze customer data and predict:

  • Which models buyers are likely to prefer
  • Optimal pricing strategies
  • Best timing for promotions

Virtual Assistants and Chatbots

Dealerships and manufacturers deploy AI chatbots to handle:

  • Vehicle inquiries
  • Test-drive scheduling
  • Financing questions
  • Service appointments

This improves customer experience while reducing operational costs.


8. Electric Vehicles and Energy Optimization

As EV adoption grows, AI plays a critical role in managing batteries and energy consumption.

Battery Management Systems

AI optimizes:

  • Charging patterns
  • Thermal regulation
  • Battery degradation prediction
  • Range estimation

These models extend battery life and provide more accurate driving-range forecasts — two key concerns for EV owners.

Smart Charging

AI integrates vehicles with power grids, enabling:

  • Off-peak charging
  • Load balancing
  • Renewable energy optimization

This supports both drivers and utilities.


Challenges and Considerations

Despite rapid progress, significant challenges remain:

Safety and Trust

AI-driven vehicles must achieve near-perfect reliability. Even rare failures can undermine public confidence.

Data Privacy

Connected cars generate massive amounts of personal and location data, raising privacy concerns.

Regulation

Governments worldwide are still defining frameworks for autonomous driving liability and certification.

Ethical Decision Making

Self-driving systems introduce complex moral questions around accident scenarios and responsibility.


The Road Ahead

AI is transforming automobiles from mechanical machines into intelligent, connected platforms.

In the coming years, we’ll see:

  • Increasing autonomy
  • Deeper personalization
  • Fully digital vehicle ecosystems
  • Seamless integration with smart cities
  • AI-driven mobility services replacing traditional ownership models

The automotive industry is evolving into a software-first, data-driven business — and AI is the engine powering that transformation.


Final Thoughts

AI in automotive isn’t just about self-driving cars. It’s about smarter design, safer roads, efficient factories, predictive maintenance, personalized experiences, and sustainable mobility.

Much like how “AI in Gaming” is reshaping player experiences and development pipelines, “AI in Automotive” is redefining how vehicles are created and how people move through the world.

We’re witnessing the birth of intelligent transportation — and this journey is only just beginning.

Thanks for reading and good luck on your data journey!

Identify Features of Generative AI Workloads (AI-900 Exam Prep)

Overview

Generative AI is a class of Artificial Intelligence (AI) workloads that create new content rather than only analyzing or classifying existing data. On the AI-900: Microsoft Azure AI Fundamentals exam, you are expected to understand what generative AI is, what kinds of problems it solves, and how it differs from other AI workloads—not how to train large models or write code.

This topic appears under:

  • Describe Artificial Intelligence workloads and considerations (15–20%)
    • Identify features of common AI workloads

Expect conceptual and scenario-based questions that test whether you can recognize when generative AI is the appropriate approach.


What Is a Generative AI Workload?

A generative AI workload uses models that can generate new, original content based on patterns learned from large datasets.

Generative AI systems can produce:

  • Text (responses, summaries, stories, code)
  • Images (artwork, illustrations, designs)
  • Audio (music, speech)
  • Video (short clips or animations)

Key defining feature:
Unlike traditional AI that predicts or classifies, generative AI creates.


Common Generative AI Use Cases

On the AI-900 exam, generative AI is typically presented through productivity, creativity, or assistance scenarios.

Text Generation

What it does: Generates human-like text based on a prompt.

Example scenarios:

  • Drafting emails or reports
  • Writing marketing copy
  • Generating code snippets
  • Creating conversational responses

Key idea: The model produces new text rather than selecting from predefined responses.


Summarization

What it does: Creates concise summaries of longer text.

Example scenarios:

  • Summarizing documents or meeting notes
  • Condensing long articles

Exam note: Summarization may appear in both NLP and generative AI contexts. When the output is newly generated text, it is generative AI.


Question Answering and Chat Experiences

What it does: Generates natural language answers to user questions.

Example scenarios:

  • AI chat assistants
  • Knowledge-based Q&A systems

Key idea: Responses are generated dynamically rather than retrieved verbatim.


Image Generation

What it does: Creates images from text descriptions.

Example scenarios:

  • Generating illustrations or artwork
  • Creating marketing visuals

Key idea: The system produces entirely new images rather than analyzing existing ones.


Code Generation

What it does: Generates programming code from natural language prompts.

Example scenarios:

  • Creating sample scripts
  • Explaining or completing code

Azure Services Associated with Generative AI

For AI-900, service knowledge is high-level and conceptual.

Azure OpenAI Service

Supports:

  • Text generation
  • Chat-based experiences
  • Image generation
  • Code generation

This is the primary Azure service associated with generative AI workloads on the exam.


How Generative AI Differs from Other AI Workloads

Recognizing these differences is critical for AI-900.

AI Workload TypePrimary Output
Generative AINewly created content
Natural Language ProcessingAnalysis of text
Computer VisionAnalysis of images and video
Document ProcessingStructured data extraction
Speech AITranscription or audio generation

Exam tip: If the system is creating something new (text, image, code), think generative AI.


Prompt Engineering (Conceptual Awareness)

AI-900 includes basic awareness of prompting.

Prompt engineering refers to crafting inputs that guide a generative model toward better outputs.

Examples:

  • Providing context
  • Specifying tone or format
  • Giving examples in the prompt

No technical depth is required, but you should understand that outputs depend on prompts.


Responsible AI Considerations

Generative AI introduces unique risks.

Key considerations include:

  • Hallucinations (incorrect or fabricated outputs)
  • Bias in generated content
  • Harmful or inappropriate responses
  • Transparency that content is AI-generated

AI-900 tests awareness, not mitigation techniques.


Exam Tips for Identifying Generative AI Workloads

  • Look for verbs like generate, create, draft, write, summarize
  • Focus on whether the output is new content
  • Ignore implementation details and model names
  • Choose generative AI when static rules or classification are insufficient

Summary

For the AI-900 exam, you should be able to:

  • Recognize scenarios that require generative AI
  • Identify common generative AI use cases
  • Associate generative AI with Azure OpenAI Service
  • Distinguish generative AI from analytical AI workloads
  • Understand high-level responsible AI considerations

Go to the Practice Exam Questions for this topic.

Go to the AI-900 Exam Prep Hub main page.

Practice Questions: Identify Features of Generative AI Workloads (AI-900 Exam Prep)

Practice Questions


Question 1

A user enters a prompt asking an AI system to draft a professional email summarizing a meeting.

Which type of AI workload is this?

A. Natural language processing (analysis)
B. Document processing
C. Generative AI
D. Computer vision

Correct Answer: C

Explanation: The system is creating new text content based on a prompt, which is the defining feature of generative AI.


Question 2

An AI solution produces original images based on text descriptions such as “a beach at sunset in a watercolor style.”

Which AI workload does this represent?

A. Image classification
B. Object detection
C. Generative AI
D. Computer vision only

Correct Answer: C

Explanation: Image generation creates entirely new images from text prompts, which is a core generative AI capability.


Question 3

Which characteristic most clearly distinguishes generative AI from traditional AI workloads?

A. Uses labeled training data
B. Classifies existing data
C. Generates new content
D. Requires structured input

Correct Answer: C

Explanation: Generative AI creates new outputs (text, images, code), rather than only analyzing or classifying existing data.


Question 4

A chatbot generates unique responses to user questions instead of selecting predefined answers.

Which workload is being used?

A. Rule-based automation
B. Natural language processing only
C. Generative AI
D. Speech recognition

Correct Answer: C

Explanation: Dynamic, context-aware responses that are newly generated indicate a generative AI workload.


Question 5

A company uses an AI system to summarize long reports into short executive summaries.

Why is this considered a generative AI workload?

A. It detects sentiment in the text
B. It extracts key phrases only
C. It generates new summarized text
D. It translates text between languages

Correct Answer: C

Explanation: Summarization involves generating new text that captures the meaning of the original content.


Question 6

Which Azure service is most commonly associated with generative AI workloads on the AI-900 exam?

A. Azure AI Vision
B. Azure AI Language
C. Azure AI Document Intelligence
D. Azure OpenAI Service

Correct Answer: D

Explanation: Azure OpenAI Service provides models for text, image, and code generation and is the primary generative AI service tested in AI-900.


Question 7

A developer writes prompts that specify tone, format, and examples to guide an AI model’s output.

What is this practice called?

A. Model training
B. Prompt engineering
C. Data labeling
D. Hyperparameter tuning

Correct Answer: B

Explanation: Prompt engineering is the practice of crafting prompts to influence the quality and style of generative AI outputs.


Question 8

Which scenario is least likely to use a generative AI workload?

A. Writing marketing copy
B. Generating code examples
C. Classifying customer reviews by topic
D. Creating chatbot responses

Correct Answer: C

Explanation: Classifying text by topic is a traditional NLP analysis task, not a generative AI workload.


Question 9

Which risk is especially associated with generative AI workloads?

A. Image resolution issues
B. Hallucinated or incorrect outputs
C. Poor audio quality
D. Inaccurate bounding boxes

Correct Answer: B

Explanation: Generative AI models can produce outputs that sound plausible but are incorrect, known as hallucinations.


Question 10

Which clue in a scenario most strongly indicates a generative AI workload?

A. The system analyzes scanned documents
B. The system extracts key-value pairs
C. The system generates original text or images
D. The system detects objects in images

Correct Answer: C

Explanation: The creation of new content is the clearest indicator of a generative AI workload.


Final Exam Tip

If a scenario involves creating, drafting, generating, or summarizing content, and the output is new, the correct answer is almost always generative AI, commonly associated with Azure OpenAI Service.


Go to the AI-900 Exam Prep Hub main page.

Practice Questions: Identify Features of Generative AI Models (AI-900 Exam Prep)

Practice Questions


Question 1

Which scenario is the best example of a generative AI workload?

A. Predicting tomorrow’s temperature based on historical data
B. Classifying emails as spam or not spam
C. Generating a product description from a short prompt
D. Detecting anomalies in server performance metrics

Correct Answer: C

Explanation:
Generative AI models are designed to create new content, such as text, images, or code. Generating a product description is a content creation task, which is a core feature of generative AI.


Question 2

What is a key characteristic that distinguishes generative AI models from traditional machine learning models?

A. They require labeled training data
B. They produce deterministic outputs
C. They generate new data similar to training data
D. They can only be used for classification tasks

Correct Answer: C

Explanation:
Generative AI models learn patterns from data and generate new outputs that resemble the data they were trained on, rather than only predicting labels or numeric values.


Question 3

What role does a prompt play when working with a generative AI model?

A. It retrains the model with new data
B. It defines how the model should generate a response
C. It validates the accuracy of the model
D. It encrypts the generated output

Correct Answer: B

Explanation:
A prompt provides instructions or context that guide the model’s output. It does not retrain the model or affect its underlying parameters.


Question 4

Why can the same prompt sometimes produce different responses from a generative AI model?

A. The model uses rule-based logic
B. The model is deterministic
C. The model generates probabilistic outputs
D. The training data changes after each request

Correct Answer: C

Explanation:
Generative AI models use probabilistic methods, meaning they select likely next outputs rather than fixed responses, which can result in variation.


Question 5

Which feature enables a generative AI model to produce human-like text responses?

A. Feature engineering
B. Context awareness and large-scale pretraining
C. Manual rule definition
D. Binary classification

Correct Answer: B

Explanation:
Generative AI models are pretrained on massive datasets and use context to generate fluent, coherent, human-like responses.


Question 6

Which statement best describes the training approach used by most generative AI models?

A. They are trained only on small, task-specific datasets
B. They are pretrained on large datasets and adapted for many tasks
C. They require real-time retraining for each request
D. They are trained exclusively using reinforcement learning

Correct Answer: B

Explanation:
Generative AI models are typically large pretrained models that can perform multiple tasks without retraining.


Question 7

Which scenario would most likely require the use of a generative AI model?

A. Predicting customer churn
B. Assigning product categories
C. Writing a summary of a long document
D. Detecting fraudulent transactions

Correct Answer: C

Explanation:
Summarization involves creating new text, which is a hallmark of generative AI workloads.


Question 8

What is a common risk associated with generative AI models that requires responsible AI controls?

A. Overfitting to training data
B. Hallucinations and biased outputs
C. Low model accuracy
D. Inability to scale

Correct Answer: B

Explanation:
Generative AI models can produce confident but incorrect information or biased content, making responsible AI safeguards essential.


Question 9

Which feature allows a generative AI model to continue a conversation in a meaningful way?

A. Feature scaling
B. Context retention
C. Label encoding
D. Data normalization

Correct Answer: B

Explanation:
Context retention enables generative AI models to understand previous inputs and generate coherent multi-turn conversations.


Question 10

Which statement best describes the scope of tasks generative AI models can perform?

A. They are limited to a single predefined task
B. They can perform multiple tasks using the same model
C. They must be retrained for each task
D. They only work with numerical data

Correct Answer: B

Explanation:
Generative AI models are general-purpose, capable of handling a wide variety of tasks such as summarization, translation, content generation, and question answering.


Final Exam Tip 💡

If an AI-900 question mentions:

  • Creating text, images, or code
  • Prompts
  • Conversations
  • Human-like responses

👉 Think: Generative AI model


Go to the AI-900 Exam Prep Hub main page.

Identify Features of Generative AI Models (AI-900 Exam Prep)

Introduction

Generative AI models are a class of artificial intelligence systems designed to create new content rather than simply analyze or classify existing data. In the AI-900 exam, Microsoft focuses on conceptual understanding, not implementation details. You are expected to recognize what generative AI models do, how they behave, and what makes them different from traditional machine learning models.

Generative AI underpins many modern Azure AI solutions, including Azure OpenAI Service, and plays a central role in text, image, code, and audio generation workloads.


What Is a Generative AI Model?

A generative AI model learns patterns, structure, and relationships from large datasets and uses that knowledge to generate new, original outputs that resemble the data it was trained on.

Unlike predictive models (which output labels or numeric values), generative models produce:

  • Text
  • Images
  • Code
  • Audio
  • Synthetic data

Key Features of Generative AI Models (Exam Focus)

1. Content Generation

Generative AI models can create new content rather than selecting from predefined responses.

Examples:

  • Writing emails, stories, or summaries
  • Generating images from text descriptions
  • Producing computer code
  • Creating conversational responses

AI-900 cue: If the scenario involves creating something new, it likely involves generative AI.


2. Large Pretrained Models

Generative AI models are typically pretrained on massive datasets containing text, images, or other media.

Key characteristics:

  • Trained on diverse, large-scale data
  • Capture language structure, context, and semantics
  • Can generalize to many tasks without retraining

Examples:

  • Large language models (LLMs)
  • Multimodal foundation models

3. Prompt-Based Interaction

Generative AI models are commonly controlled using prompts, which are natural language instructions or inputs.

Prompts can:

  • Ask questions
  • Provide instructions
  • Set constraints or styles
  • Include examples (few-shot prompting)

Exam tip: Prompts guide how the model responds but do not retrain the model.


4. Probabilistic Output (Non-Deterministic)

Generative AI models produce probabilistic responses, meaning:

  • The same prompt can produce different outputs
  • Responses are not fixed or guaranteed
  • Outputs are generated based on likelihood, not rules

This enables creativity but also requires careful validation.


5. Context Awareness

Generative AI models can use context provided in a conversation or prompt to influence responses.

Examples:

  • Remembering earlier parts of a conversation
  • Adjusting tone or topic based on prior input
  • Generating coherent multi-turn dialogue

This is especially relevant for chat-based AI systems.


6. General-Purpose Capability

Generative AI models are often multi-task by design.

A single model can:

  • Answer questions
  • Summarize text
  • Translate languages
  • Generate explanations
  • Write code

This contrasts with traditional ML models, which are typically task-specific.


7. Fine-Tuning and Customization

While generative AI models are pretrained, they can be:

  • Fine-tuned with domain-specific data
  • Prompt-engineered for specific use cases
  • Configured with system instructions

For AI-900, it’s important to know customization is possible, not how to implement it.


8. Human-Like Outputs

Generative AI models are designed to produce outputs that appear:

  • Natural
  • Fluent
  • Contextually relevant
  • Similar to human-generated content

This is especially true for text and conversational AI.


9. Support for Multimodal Data

Some generative AI models can work across multiple data types, such as:

  • Text → Image
  • Image → Text
  • Text → Code

AI-900 expects recognition of this capability, not technical depth.


10. Need for Responsible AI Controls

Generative AI models require safeguards due to risks such as:

  • Hallucinations (incorrect but confident outputs)
  • Bias
  • Harmful or inappropriate content

Microsoft emphasizes:

  • Content filtering
  • Responsible AI principles
  • Human oversight

Generative AI vs Traditional Machine Learning (High-Yield Comparison)

AspectTraditional MLGenerative AI
Primary goalPredict or classifyCreate new content
Output typeLabels or numbersText, images, code, audio
Task scopeNarrow, specificBroad, general-purpose
Interaction styleStructured inputsNatural language prompts
CreativityNoneHigh

Azure Context (What AI-900 Expects You to Recognize)

Generative AI workloads on Azure are commonly delivered through:

  • Azure OpenAI Service
  • Integrated Azure AI tooling
  • Secure, enterprise-ready AI deployments

You are not expected to know APIs or pricing — only capabilities and use cases.


Common Exam Triggers to Watch For 👀

If a question mentions:

  • Writing text
  • Creating images
  • Generating code
  • Conversational responses
  • Prompt-based interaction

➡️ Think: Generative AI model


Summary

For the AI-900 exam, generative AI models are defined by their ability to:

  • Generate new content
  • Respond to prompts
  • Operate probabilistically
  • Handle multiple tasks
  • Produce human-like outputs
  • Require responsible AI safeguards

Understanding these features, not implementation details, is the key to scoring well in this exam section.


Go to the Practice Exam Questions for this topic.

Go to the AI-900 Exam Prep Hub main page.

Generative AI vs Predictive ML vs Traditional AI (AI-900 Exam Prep)

Here is some additional information to help you solidify your knowledge and understanding of the concepts and prep for the AI-900 exam.


Generative AI vs Predictive ML vs Traditional AI comparison matrix

AspectGenerative AIPredictive Machine LearningTraditional (Rule-Based) AI
Primary PurposeGenerate new contentPredict outcomes or valuesExecute predefined rules
Typical OutputText, images, audio, code, videoLabels, categories, numbers, scoresYes/No decisions or fixed actions
Creates New Content?✅ Yes❌ No❌ No
Learns From Data?✅ Yes (large-scale pretraining)✅ Yes (task-specific training)❌ No (rules written by humans)
Uses Probabilities?✅ Yes✅ Yes❌ No
Deterministic Output?❌ No (responses may vary)⚠️ Usually deterministic✅ Yes
Handles Unstructured Data✅ Excellent⚠️ Limited❌ Poor
Example TasksChatbots, summarization, image generation, translationFraud detection, churn prediction, demand forecastingEligibility checks, business rules, workflow automation
Typical Algorithms / ModelsTransformers, large language modelsRegression, classification, clustering modelsIf-then rules, decision trees (manual)
Training Data SizeVery large, diverse datasetsModerate, task-specific datasetsNone
Needs Prompts?✅ Yes❌ No❌ No
Adaptable to Many Tasks✅ High⚠️ Medium❌ Low
Common Azure ServicesAzure OpenAI ServiceAzure Machine LearningLogic Apps, Power Automate
Example Use CaseGenerate a marketing email from a promptPredict customer churn probabilityApprove a loan if all conditions are met

Quick Mental Model / One-Line Summaries

Think of it this way:

  • Generative AI“Create something new”
  • Predictive ML“Predict or classify something”
  • Traditional AI“Follow the rules exactly”

Or put another way:

  • Generative AI: Produces new content using large pretrained models
  • Predictive ML: Uses historical data to predict outcomes
  • Traditional AI: Uses human-defined rules to make decisions

Common AI-900 Trap to Avoid

“Generative AI is just a type of predictive model”

While generative AI uses prediction internally, its goal is content creation, not classification or numeric prediction.


Go to the AI-900 Exam Prep Hub main page.

Workload Scenarios to Correct AI Approach mappings (AI-900 Exam Prep)

Here is some additional information to help you solidify your knowledge and prepare for the AI-900 exam.


1. Core AI Approaches

AI ApproachWhat It’s Best At
Traditional (Rule-Based) AIFixed logic, deterministic decisions
Predictive Machine LearningPredicting values or classifying outcomes
Generative AICreating new content from prompts

Another way to relay the same information:

  • If it follows rules, it’s traditional AI.
  • If it predicts, it’s ML.
  • If it creates, it’s generative AI

2. Scenario-to-Approach Mapping

Business Rules & Automation

ScenarioCorrect AI ApproachWhy
Approve a loan if income > thresholdTraditional AIRule-based, no learning required
Route support tickets based on keywordsTraditional AIDeterministic logic
Enforce compliance policiesTraditional AIRules must be followed exactly

Predictive & Analytical Scenarios

ScenarioCorrect AI ApproachWhy
Predict customer churnPredictive ML (Classification)Binary outcome
Forecast product demandPredictive ML (Regression)Numeric prediction
Detect credit card fraudPredictive ML (Classification)Probability-based decision
Predict house pricesPredictive ML (Regression)Continuous value
Segment customersPredictive ML (Clustering)Discover groups

Natural Language Processing (NLP)

ScenarioCorrect AI ApproachWhy
Analyze customer sentimentPredictive ML (NLP)Classification of sentiment
Extract key phrases from textPredictive ML (NLP)Pattern recognition
Recognize named entitiesPredictive ML (NLP)Identify structured info
Translate textGenerative AI / NLPGenerates new text
Summarize documentsGenerative AIContent creation

Computer Vision

ScenarioCorrect AI ApproachWhy
Identify objects in an imagePredictive ML (Vision)Classification/detection
Detect faces in imagesPredictive ML (Vision)Pattern recognition
Read printed text from images (OCR)Predictive ML (Vision)Extraction task
Generate images from textGenerative AICreates new images

Speech Workloads

ScenarioCorrect AI ApproachWhy
Convert speech to textPredictive ML (Speech)Recognition task
Convert text to speechGenerative AIGenerates audio
Identify spoken languagePredictive MLClassification

Generative AI Scenarios

ScenarioCorrect AI ApproachWhy
Generate an email from a promptGenerative AINew content
Write code from a descriptionGenerative AIContent generation
Answer questions conversationallyGenerative AIDynamic responses
Create images from text promptsGenerative AICreative output

3. Azure Service Mapping

Scenario TypeAzure Service
Predictive MLAzure Machine Learning
NLP (Sentiment, Entities)Azure AI Language
Speech workloadsAzure AI Speech
Vision workloadsAzure AI Vision
Generative AIAzure OpenAI Service
Rule-based workflowsLogic Apps / Power Automate

4. Common AI-900 Exam Traps

TrapCorrect Thinking
“Translation is classification”❌ Translation generates text
“Chatbots are always rule-based”❌ Modern chatbots use generative AI
“OCR generates text”❌ OCR extracts existing text
“Generative AI replaces ML”❌ Different goals

Go to the AI-900 Exam Prep Hub main page.

Practice Questions: Identify Common Scenarios for Generative AI (AI-900 Exam Prep)

Practice Questions


Question 1

You want to build a solution that can write marketing emails based on a short prompt describing a product.
Which AI approach should you use?

A. Traditional rule-based AI
B. Predictive machine learning
C. Generative AI
D. Computer vision

Correct Answer: C

Explanation:
The solution must create new text content based on prompts. This is a defining characteristic of generative AI, not prediction or rules.


Question 2

A chatbot is required to answer open-ended customer questions using natural, conversational language.
Which scenario does this represent?

A. Sentiment analysis
B. Rule-based automation
C. Generative AI
D. Classification

Correct Answer: C

Explanation:
Conversational assistants that generate dynamic responses are a common generative AI scenario. Rule-based chatbots would rely on predefined responses instead.


Question 3

You need a system that summarizes long legal documents into short executive summaries.
Which type of AI workload is this?

A. Predictive machine learning
B. Generative AI
C. Optical character recognition (OCR)
D. Entity recognition

Correct Answer: B

Explanation:
Summarization involves creating new text that condenses original content, which makes this a generative AI workload.


Question 4

Which task is most appropriate for a generative AI model?

A. Predicting house prices
B. Detecting objects in images
C. Translating text between languages
D. Classifying emails as spam

Correct Answer: C

Explanation:
Translation requires generating new text in another language. The other options are predictive or computer vision tasks.


Question 5

A developer wants to generate Python code from a natural language description of a task.
Which AI capability is being used?

A. Regression
B. Classification
C. Rule-based automation
D. Generative AI

Correct Answer: D

Explanation:
Generating source code from prompts is a classic generative AI use case.


Question 6

Which keyword in an exam question most strongly indicates a generative AI scenario?

A. Predict
B. Classify
C. Detect
D. Generate

Correct Answer: D

Explanation:
Words like generate, create, write, and compose are strong indicators of generative AI scenarios on the AI-900 exam.


Question 7

You need to build a solution that creates images based on a text description.
Which Azure service is most appropriate?

A. Azure AI Vision
B. Azure Machine Learning
C. Azure OpenAI Service
D. Azure AI Language

Correct Answer: C

Explanation:
Azure OpenAI Service is the primary Azure service for generative AI workloads, including text and image generation.


Question 8

Which scenario is NOT a generative AI use case?

A. Writing product descriptions
B. Creating an AI-powered tutor
C. Detecting faces in photos
D. Summarizing meeting notes

Correct Answer: C

Explanation:
Face detection analyzes existing images and does not create new content. It is a computer vision task, not generative AI.


Question 9

A company wants an AI system that rewrites customer emails to sound more polite and professional.
Which AI approach should be used?

A. Predictive machine learning
B. Traditional AI
C. Generative AI
D. Clustering

Correct Answer: C

Explanation:
Rewriting or rephrasing text involves generating new text, which is a generative AI capability.


Question 10

Which statement best describes generative AI?

A. It follows predefined business rules
B. It predicts numeric values
C. It groups similar data points
D. It creates new content based on learned patterns

Correct Answer: D

Explanation:
Generative AI models are designed to create new outputs (text, images, code, audio) based on patterns learned from large datasets.


Quick Exam Tip

If the question asks:

  • “Will the AI create something new?” → Generative AI
  • “Will the AI predict or label?” → Predictive ML
  • “Will the AI follow strict rules?” → Traditional AI

Go to the AI-900 Exam Prep Hub main page.

Identify Common Scenarios for Generative AI (AI-900 Exam Prep)

Overview

In the AI-900: Microsoft Azure AI Fundamentals exam, generative AI represents a significant and growing focus area. This topic assesses your ability to recognize when generative AI is the appropriate solution and how it differs from traditional AI and predictive machine learning.

Generative AI models are designed to create new content—such as text, images, audio, or code—based on patterns learned from large datasets and guided by user prompts.

This article explains common real-world scenarios where generative AI is used, how those scenarios appear on the AI-900 exam, and how they map to Azure services.


What Makes a Scenario “Generative AI”?

A workload is a generative AI scenario when:

  • The output is newly generated content, not just a prediction or classification
  • The model responds to natural language prompts or instructions
  • The output can vary creatively, even for similar inputs

If the task is to predict, classify, or extract, it is not generative AI. If the task is to create, compose, or generate, it is.


Common Generative AI Scenarios (AI-900 Focus)

1. Text Generation

Scenario examples:

  • Writing emails, reports, or marketing copy
  • Drafting blog posts or documentation
  • Generating summaries from bullet points

Why this is generative AI: The model creates original text based on a prompt rather than selecting from predefined responses.


2. Conversational AI and Chatbots

Scenario examples:

  • AI-powered customer support chatbots
  • Virtual assistants that answer open-ended questions
  • Knowledge assistants that explain concepts conversationally

Why this is generative AI: Responses are dynamically generated and context-aware, rather than rule-based or scripted.


3. Text Summarization

Scenario examples:

  • Summarizing long documents
  • Creating executive summaries
  • Condensing meeting transcripts

Why this is generative AI: The model produces a new, concise version of the original content while preserving meaning.


4. Translation and Language Transformation

Scenario examples:

  • Translating text between languages
  • Rewriting text to be simpler or more formal
  • Paraphrasing content

Why this is generative AI: The output text is newly generated rather than extracted or classified.


5. Code Generation and Assistance

Scenario examples:

  • Generating code from natural language descriptions
  • Explaining existing code
  • Refactoring or optimizing code snippets

Why this is generative AI: The model creates original source code based on intent expressed in a prompt.


6. Image Generation

Scenario examples:

  • Creating images from text prompts
  • Generating artwork or design concepts
  • Producing visual content for marketing

Why this is generative AI: The model synthesizes entirely new images rather than identifying objects in existing ones.


7. Audio and Speech Generation

Scenario examples:

  • Converting text into natural-sounding speech
  • Generating voiceovers
  • Creating spoken responses for virtual assistants

Why this is generative AI: The audio output is generated dynamically from text input.


Azure Services Commonly Used for Generative AI

For the AI-900 exam, generative AI scenarios are most commonly associated with:

  • Azure OpenAI Service
    • Large language models (LLMs)
    • Text, code, and image generation
    • Conversational AI

Other Azure services (such as Azure AI Speech or Language) may support generative capabilities, but Azure OpenAI Service is the primary service to associate with generative AI workloads.


Generative AI vs Other AI Approaches (Quick Contrast)

Task TypeAI Approach
Predict a value or categoryPredictive Machine Learning
Follow predefined rulesTraditional AI
Create new text, images, or codeGenerative AI

How This Appears on the AI-900 Exam

On the exam, generative AI scenarios are typically described using words such as:

  • Generate
  • Create
  • Write
  • Summarize
  • Compose
  • Respond conversationally

If the question emphasizes creative or open-ended output, generative AI is likely the correct choice.


Key Takeaways for Exam Day

  • Generative AI is about creation, not prediction
  • Outputs are flexible and context-aware
  • Azure OpenAI Service is the primary Azure service for generative AI
  • If the output did not previously exist, generative AI is likely the answer

Go to the Practice Exam Questions for this topic.

Go to the AI-900 Exam Prep Hub main page.

Practice Questions: Identify Responsible AI Considerations for Generative AI (AI-900 Exam Prep)

Practice Exam Questions


Question 1

A company uses a generative AI model to create marketing content. They want to ensure the model does not produce offensive or harmful language.

Which Responsible AI principle is being addressed?

A. Transparency
B. Fairness
C. Reliability and Safety
D. Accountability

Correct Answer: C

Explanation:
Preventing harmful or offensive outputs is a core aspect of reliability and safety, which ensures AI systems behave safely under expected conditions.


Question 2

A chatbot powered by generative AI informs users that responses are created by an AI system and may contain errors.

Which Responsible AI principle does this demonstrate?

A. Privacy and Security
B. Transparency
C. Inclusiveness
D. Fairness

Correct Answer: B

Explanation:
Clearly communicating that content is AI-generated and may be inaccurate supports transparency, helping users understand the system’s limitations.


Question 3

A developer ensures that AI-generated job descriptions do not favor or exclude any gender, ethnicity, or age group.

Which Responsible AI principle is being applied?

A. Accountability
B. Fairness
C. Reliability and Safety
D. Privacy

Correct Answer: B

Explanation:
Avoiding bias and discrimination in generated content aligns with the fairness principle.


Question 4

An organization requires a human reviewer to approve all AI-generated responses before they are published on a public website.

Which Responsible AI principle does this represent?

A. Transparency
B. Reliability and Safety
C. Accountability
D. Inclusiveness

Correct Answer: C

Explanation:
Ensuring humans remain responsible for AI outputs demonstrates accountability.


Question 5

A generative AI system is designed so that user prompts and outputs are not stored or used to retrain the model.

Which Responsible AI principle is primarily addressed?

A. Transparency
B. Privacy and Security
C. Fairness
D. Inclusiveness

Correct Answer: B

Explanation:
Protecting user data and preventing unauthorized use of information supports privacy and security.


Question 6

Which feature in Azure AI services helps prevent generative AI models from producing unsafe or inappropriate content?

A. Model training
B. Content filters
C. Data labeling
D. Feature engineering

Correct Answer: B

Explanation:
Content filters are used to block harmful, unsafe, or inappropriate AI-generated outputs.


Question 7

A generative AI model supports multiple languages and produces accessible text for diverse user groups.

Which Responsible AI principle does this best represent?

A. Fairness
B. Transparency
C. Inclusiveness
D. Accountability

Correct Answer: C

Explanation:
Supporting diverse languages and accessibility aligns with the inclusiveness principle.


Question 8

Which scenario best illustrates a Responsible AI concern specific to generative AI?

A. A model classifies images into categories
B. A model predicts future sales
C. A model generates false but confident answers
D. A model stores structured data in a database

Correct Answer: C

Explanation:
Generative AI can produce hallucinations—incorrect but plausible outputs—which is a key Responsible AI concern.


Question 9

Why is Responsible AI especially important for generative AI workloads?

A. Generative AI requires more computing power
B. Generative AI creates new content that can cause harm if uncontrolled
C. Generative AI only works with unstructured data
D. Generative AI replaces traditional machine learning

Correct Answer: B

Explanation:
Because generative AI creates new content, it can introduce bias, misinformation, or harmful outputs if not properly governed.


Question 10

A company uses Azure OpenAI Service and wants to ensure ethical use of generative AI.

Which action best supports Responsible AI practices?

A. Removing all system prompts
B. Enabling content moderation and human review
C. Increasing model size
D. Disabling user authentication

Correct Answer: B

Explanation:
Combining content moderation with human oversight helps ensure safe, ethical, and responsible use of generative AI.


Final Exam Tips for This Topic

  • Expect scenario-based questions
  • Focus on principles, not technical configuration
  • Watch for keywords: bias, harm, safety, privacy, transparency
  • If the question mentions risk or trust, think Responsible AI

Go to the AI-900 Exam Prep Hub main page.