Category: Databases

Exam Prep Hub for DP-600: Implementing Analytics Solutions Using Microsoft Fabric

This is your one-stop hub with information for preparing for the DP-600: Implementing Analytics Solutions Using Microsoft Fabric certification exam. Upon successful completion of the exam, you earn the Fabric Analytics Engineer Associate certification.

This hub provides information directly here, links to a number of external resources, tips for preparing for the exam, practice tests, and section questions to help you prepare. Bookmark this page and use it as a guide to ensure that you are fully covering all relevant topics for the exam and using as many of the resources available as possible. We hope you find it convenient and helpful.

Why do the DP-600: Implementing Analytics Solutions Using Microsoft Fabric exam to gain the Fabric Analytics Engineer Associate certification?

Most likely, you already know why you want to earn this certification, but in case you are seeking information on its benefits, here are a few:
(1) there is a possibility for career advancement because Microsoft Fabric is a leading data platform used by companies of all sizes, all over the world, and is likely to become even more popular
(2) greater job opportunities due to the edge provided by the certification
(3) higher earnings potential,
(4) you will expand your knowledge about the Fabric platform by going beyond what you would normally do on the job and
(5) it will provide immediate credibility about your knowledge, and
(6) it may, and it should, provide you with greater confidence about your knowledge and skills.


Important DP-600 resources:


DP-600: Skills measured as of October 31, 2025:

Here you can learn in a structured manner by going through the topics of the exam one-by-one to ensure full coverage; click on each hyperlinked topic below to go to more information about it:

Skills at a glance

  • Maintain a data analytics solution (25%-30%)
  • Prepare data (45%-50%)
  • Implement and manage semantic models (25%-30%)

Maintain a data analytics solution (25%-30%)

Implement security and governance

Maintain the analytics development lifecycle

Prepare data (45%-50%)

Get Data

Transform Data

Query and analyze data

Implement and manage semantic models (25%-30%)

Design and build semantic models

Optimize enterprise-scale semantic models


Practice Exams:

We have provided 2 practice exams with answers to help you prepare.

DP-600 Practice Exam 1 (60 questions with answer key)

DP-600 Practice Exam 2 (60 questions with answer key)


Good luck to you passing the DP-600: Implementing Analytics Solutions Using Microsoft Fabric certification exam and earning the Fabric Analytics Engineer Associate certification!

Create Views, Functions, and Stored Procedures

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Transform data
--> Create views, functions, and stored procedures

Creating views, functions, and stored procedures is a core data transformation and modeling skill for analytics engineers working in Microsoft Fabric. These objects help abstract complexity, improve reusability, enforce business logic, and optimize downstream analytics and reporting.

This section of the DP-600 exam focuses on when, where, and how to use these objects effectively across Fabric components such as Lakehouses, Warehouses, and SQL analytics endpoints.

Views

What are Views?

A view is a virtual table defined by a SQL query. It does not store data itself but presents data dynamically from underlying tables.

Where Views Are Used in Fabric

  • Fabric Data Warehouse
  • Lakehouse SQL analytics endpoint
  • Exposed to Power BI semantic models and other consumers

Common Use Cases

  • Simplify complex joins and transformations
  • Present curated, analytics-ready datasets
  • Enforce column-level or row-level filtering logic
  • Provide a stable schema over evolving raw data

Key Characteristics

  • Always reflect the latest data
  • Can be used like tables in SELECT statements
  • Improve maintainability and readability
  • Can support security patterns when combined with permissions

Exam Tip

Know that views are ideal for logical transformations, not heavy compute or data persistence.

Functions

What are Functions?

Functions encapsulate reusable logic and return a value or a table. They help standardize calculations and transformations across queries.

Types of Functions (SQL)

  • Scalar functions: Return a single value (e.g., formatted date, calculated metric)
  • Table-valued functions (TVFs): Return a result set that behaves like a table

Where Functions Are Used in Fabric

  • Fabric Warehouses
  • SQL analytics endpoints for Lakehouses

Common Use Cases

  • Standardized business calculations
  • Reusable transformation logic
  • Parameterized filtering or calculations
  • Cleaner and more modular SQL code

Key Characteristics

  • Improve consistency across queries
  • Can be referenced in views and stored procedures
  • May impact performance if overused in large queries

Exam Tip

Functions promote reuse and consistency, but should be used thoughtfully to avoid performance overhead.

Stored Procedures

What are Stored Procedures?

Stored procedures are precompiled SQL code blocks that can accept parameters and perform multiple operations.

Where Stored Procedures Are Used in Fabric

  • Fabric Data Warehouses
  • SQL endpoints that support procedural logic

Common Use Cases

  • Complex transformation workflows
  • Batch processing logic
  • Conditional logic and control-of-flow (IF/ELSE, loops)
  • Data loading, validation, and orchestration steps

Key Characteristics

  • Can perform multiple SQL statements
  • Can accept input and output parameters
  • Improve performance by reducing repeated compilation
  • Support automation and operational workflows

Exam Tip

Stored procedures are best for procedural logic and orchestration, not ad-hoc analytics queries.

Choosing Between Views, Functions, and Stored Procedures

ObjectBest Used For
ViewsSimplifying data access and shaping datasets
FunctionsReusable calculations and logic
Stored ProceduresComplex, parameter-driven workflows

Understanding why you would choose one over another is frequently tested on the DP-600 exam.

Integration with Power BI and Analytics

  • Views are commonly consumed by Power BI semantic models
  • Functions help ensure consistent calculations across reports
  • Stored procedures are typically part of data preparation or orchestration, not directly consumed by reports

Governance and Best Practices

  • Use clear naming conventions (e.g., vw_, fn_, sp_)
  • Document business logic embedded in SQL objects
  • Minimize logic duplication across objects
  • Apply permissions carefully to control access
  • Balance reusability with performance considerations

What to Know for the DP-600 Exam

You should be comfortable with:

  • When to use views vs. functions vs. stored procedures
  • How these objects support data transformation
  • Their role in analytics-ready data preparation
  • How they integrate with Lakehouses, Warehouses, and Power BI
  • Performance and governance implications

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

1. What is the primary purpose of creating a view in a Fabric lakehouse or warehouse?

A. To permanently store transformed data
B. To execute procedural logic with parameters
C. To provide a virtual, query-based representation of data
D. To orchestrate batch data loads

Correct Answer: C

Explanation:
A view is a virtual table defined by a SQL query. It does not store data but dynamically presents data from underlying tables, making it ideal for simplifying access and shaping analytics-ready datasets.

2. Which Fabric component commonly exposes views directly to Power BI semantic models?

A. Eventhouse
B. SQL analytics endpoint
C. Dataflow Gen2
D. Real-Time hub

Correct Answer: B

Explanation:
The SQL analytics endpoint (for lakehouses and warehouses) exposes tables and views that Power BI semantic models can consume using SQL-based connectivity.

3. When should you use a scalar function instead of a view?

A. When you need to return a dataset with multiple rows
B. When you need to encapsulate reusable calculation logic
C. When you need to perform batch updates
D. When you want to persist transformed data

Correct Answer: B

Explanation:
Scalar functions are designed to return a single value and are ideal for reusable calculations such as formatting, conditional logic, or standardized metrics.

4. Which object type can return a result set that behaves like a table?

A. Scalar function
B. Stored procedure
C. Table-valued function
D. View index

Correct Answer: C

Explanation:
A table-valued function (TVF) returns a table and can be used in FROM clauses, similar to a view but with parameterization support.

5. Which scenario is the best use case for a stored procedure?

A. Creating a simplified reporting dataset
B. Applying row-level filters for security
C. Running conditional logic with multiple SQL steps
D. Exposing data to Power BI reports

Correct Answer: C

Explanation:
Stored procedures are best suited for procedural logic, including conditional branching, looping, and executing multiple SQL statements as part of a workflow.

6. Why are views commonly preferred over duplicating transformation logic in reports?

A. Views improve report rendering speed automatically
B. Views centralize and standardize transformation logic
C. Views permanently store transformed data
D. Views replace semantic models

Correct Answer: B

Explanation:
Views allow transformation logic to be defined once and reused consistently across multiple reports and consumers, improving maintainability and governance.

7. What is a potential downside of overusing functions in large SQL queries?

A. Increased storage costs
B. Reduced data freshness
C. Potential performance degradation
D. Loss of security enforcement

Correct Answer: C

Explanation:
Functions, especially scalar functions, can negatively impact query performance when used extensively on large datasets due to repeated execution per row.

8. Which object is most appropriate for parameter-driven data preparation steps in a warehouse?

A. View
B. Scalar function
C. Table
D. Stored procedure

Correct Answer: D

Explanation:
Stored procedures support parameters, control-of-flow logic, and multiple statements, making them ideal for complex, repeatable data preparation tasks.

9. How do views support governance and security in Microsoft Fabric?

A. By encrypting data at rest
B. By defining workspace-level permissions
C. By exposing only selected columns or filtered rows
D. By controlling OneLake storage access

Correct Answer: C

Explanation:
Views can limit the columns and rows exposed to users, helping implement logical data access patterns when combined with permissions and security models.

10. Which statement best describes how these objects fit into Fabric’s analytics lifecycle?

A. They replace Power BI semantic models
B. They are primarily used for real-time streaming
C. They prepare and standardize data for downstream analytics
D. They manage infrastructure-level security

Correct Answer: C

Explanation:
Views, functions, and stored procedures play a key role in transforming, standardizing, and preparing data for consumption by semantic models, reports, and analytics tools.

Choose Between a Lakehouse, Warehouse, or Eventhouse

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Get data
--> Choose Between a Lakehouse, Warehouse, or Eventhouse

One of the most important architectural decisions a Microsoft Fabric Analytics Engineer must make is selecting the right analytical store for a given workload. For the DP-600 exam, this topic tests your ability to choose between a Lakehouse, Warehouse, or Eventhouse based on data type, query patterns, latency requirements, and user personas.

Overview of the Three Options

Microsoft Fabric provides three primary analytics storage and query experiences:

OptionPrimary Purpose
LakehouseFlexible analytics on files and tables using Spark and SQL
WarehouseEnterprise-grade SQL analytics and BI reporting
EventhouseReal-time and near-real-time analytics on streaming data

Understanding why and when to use each is critical for DP-600 success.

Lakehouse

What Is a Lakehouse?

A Lakehouse combines the flexibility of a data lake with the structure of a data warehouse. Data is stored in Delta Lake format in OneLake and can be accessed using both Spark and SQL.

When to Choose a Lakehouse

Choose a Lakehouse when you need:

  • Flexible schema (schema-on-read or schema-on-write)
  • Support for data engineering and data science
  • Access to raw, curated, and enriched data
  • Spark-based transformations and notebooks
  • Mixed workloads (batch analytics, exploration, ML)

Key Characteristics

  • Supports files and tables
  • Uses Spark SQL and T-SQL endpoints
  • Ideal for ELT and advanced transformations
  • Easy integration with notebooks and pipelines

Exam signal words: flexible, raw data, Spark, data science, experimentation

Warehouse

What Is a Warehouse?

A Warehouse is a fully managed, SQL-first analytical store optimized for business intelligence and reporting. It enforces schema-on-write and provides a traditional relational experience.

When to Choose a Warehouse

Choose a Warehouse when you need:

  • Strong SQL-based analytics
  • High-performance reporting
  • Well-defined schemas and governance
  • Centralized enterprise BI
  • Compatibility with Power BI Import or DirectQuery

Key Characteristics

  • T-SQL only (no Spark)
  • Optimized for structured data
  • Best for star/snowflake schemas
  • Familiar experience for SQL developers

Exam signal words: enterprise BI, reporting, structured, governed, SQL-first

Eventhouse

What Is an Eventhouse?

An Eventhouse is optimized for real-time and streaming analytics, built on KQL (Kusto Query Language). It is designed to handle high-velocity event data.

When to Choose an Eventhouse

Choose an Eventhouse when you need:

  • Near-real-time or real-time analytics
  • Streaming data ingestion
  • Operational or telemetry analytics
  • Event-based dashboards and alerts

Key Characteristics

  • Uses KQL for querying
  • Integrates with Eventstreams
  • Handles massive ingestion rates
  • Optimized for time-series data

Exam signal words: streaming, telemetry, IoT, real-time, events

Choosing the Right Option (Exam-Critical)

The DP-600 exam often presents scenarios where multiple options could work, but only one best fits the requirements.

Decision Matrix

RequirementBest Choice
Raw + curated dataLakehouse
Complex Spark transformationsLakehouse
Enterprise BI reportingWarehouse
Strong governance and schemasWarehouse
Streaming or telemetry dataEventhouse
Near-real-time dashboardsEventhouse
SQL-only usersWarehouse
Data science workloadsLakehouse

Common Exam Scenarios

You may be asked to:

  • Choose a storage type for a new analytics solution
  • Migrate from traditional systems to Fabric
  • Support both engineers and analysts
  • Enable real-time monitoring
  • Balance governance with flexibility

Always identify:

  1. Data type (batch vs streaming)
  2. Latency requirements
  3. User personas
  4. Query language
  5. Governance needs

Best Practices to Remember

  • Use Lakehouse as a flexible foundation for analytics
  • Use Warehouse for polished, governed BI solutions
  • Use Eventhouse for real-time operational insights
  • Avoid forcing one option to handle all workloads
  • Let business requirements—not familiarity—drive the choice

Key Takeaway
For the DP-600 exam, choosing between a Lakehouse, Warehouse, or Eventhouse is about aligning data characteristics and access patterns with the right Fabric experience. Lakehouses provide flexibility, Warehouses deliver enterprise BI performance, and Eventhouses enable real-time analytics. The correct answer is almost always the one that best fits the scenario constraints.

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions, with the below possible association:
    • Spark, raw, experimentationLakehouse
    • Enterprise BI, governed, SQL reportingWarehouse
    • Streaming, telemetry, real-timeEventhouse
  • Expect scenario-based questions rather than direct definitions

1. Which Microsoft Fabric component is BEST suited for flexible analytics on both files and tables using Spark and SQL?

A. Warehouse
B. Eventhouse
C. Lakehouse
D. Semantic model

Correct Answer: C

Explanation:
A Lakehouse stores data in Delta format in OneLake and supports both Spark and SQL, making it ideal for flexible analytics across files and tables.

2. A team of data scientists needs to experiment with raw and curated data using notebooks. Which option should they choose?

A. Warehouse
B. Eventhouse
C. Semantic model
D. Lakehouse

Correct Answer: D

Explanation:
Lakehouses are designed for data engineering and data science workloads, offering Spark-based notebooks and flexible schema handling.

3. Which option is MOST appropriate for enterprise BI reporting with well-defined schemas and strong governance?

A. Lakehouse
B. Warehouse
C. Eventhouse
D. OneLake

Correct Answer: B

Explanation:
Warehouses are SQL-first, schema-on-write systems optimized for structured data, governance, and high-performance BI reporting.

4. A solution must support near-real-time analytics on streaming IoT telemetry data. Which Fabric component should be used?

A. Lakehouse
B. Warehouse
C. Eventhouse
D. Dataflow Gen2

Correct Answer: C

Explanation:
Eventhouses are optimized for high-velocity streaming data and real-time analytics using KQL.

5. Which query language is primarily used to analyze data in an Eventhouse?

A. T-SQL
B. Spark SQL
C. DAX
D. KQL

Correct Answer: D

Explanation:
Eventhouses are built on KQL (Kusto Query Language), which is optimized for querying event and time-series data.

6. A business analytics team requires fast dashboard performance and is familiar only with SQL. Which option best meets this requirement?

A. Lakehouse
B. Warehouse
C. Eventhouse
D. Spark notebook

Correct Answer: B

Explanation:
Warehouses provide a traditional SQL experience optimized for BI dashboards and reporting performance.

7. Which characteristic BEST distinguishes a Lakehouse from a Warehouse?

A. Lakehouses support Power BI
B. Warehouses store data in OneLake
C. Lakehouses support Spark-based processing
D. Warehouses cannot be governed

Correct Answer: C

Explanation:
Lakehouses uniquely support Spark-based processing, enabling advanced transformations and data science workloads.

8. A solution must store structured batch data and unstructured files in the same analytical store. Which option should be selected?

A. Warehouse
B. Eventhouse
C. Semantic model
D. Lakehouse

Correct Answer: D

Explanation:
Lakehouses support both structured tables and unstructured or semi-structured files within the same environment.

9. Which scenario MOST strongly indicates the need for an Eventhouse?

A. Monthly financial reporting
B. Slowly changing dimension modeling
C. Real-time operational monitoring
D. Ad hoc SQL analysis

Correct Answer: C

Explanation:
Eventhouses are designed for real-time analytics on streaming data, making them ideal for operational monitoring scenarios.

10. When choosing between a Lakehouse, Warehouse, or Eventhouse on the DP-600 exam, which factor is MOST important?

A. Personal familiarity with the tool
B. The default Fabric option
C. Data characteristics and latency requirements
D. Workspace size

Correct Answer: C

Explanation:
DP-600 emphasizes selecting the correct component based on data type (batch vs streaming), latency needs, user personas, and governance—not personal preference.

Ingest or Access Data as Needed

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Get data
--> Ingest or access data as needed

A core responsibility of a Microsoft Fabric Analytics Engineer is deciding how data should be brought into Fabric—or whether it should be brought in at all. For the DP-600 exam, this topic focuses on selecting the right ingestion or access pattern based on performance, freshness, cost, and governance requirements.

Ingest vs. Access: Key Concept

Before choosing a tool or method, understand the distinction:

  • Ingest data: Physically copy data into Fabric-managed storage (OneLake)
  • Access data: Query or reference data where it already lives, without copying

The exam frequently tests your ability to choose the most appropriate option—not just a working one.

Common Data Ingestion Methods in Microsoft Fabric

1. Dataflows Gen2

Best for:

  • Low-code ingestion and transformation
  • Reusable ingestion logic
  • Business-friendly data preparation

Key characteristics:

  • Uses Power Query Online
  • Supports scheduled refresh
  • Stores results in OneLake (Lakehouse or Warehouse)
  • Ideal for centralized, governed ingestion

Exam tip:
Use Dataflows Gen2 when reuse, transformation, and governance are priorities.

2. Data Pipelines (Copy Activity)

Best for:

  • High-volume or frequent ingestion
  • Orchestration across multiple sources
  • ELT-style workflows

Key characteristics:

  • Supports many source and sink types
  • Enables scheduling, dependencies, and retries
  • Minimal transformation (primarily copy)

Exam tip:
Choose pipelines when performance and orchestration matter more than transformation.

3. Notebooks (Spark)

Best for:

  • Complex transformations
  • Data science or advanced engineering
  • Custom ingestion logic

Key characteristics:

  • Full control using Spark (PySpark, Scala, SQL)
  • Suitable for large-scale processing
  • Writes directly to OneLake

Exam tip:
Notebooks are powerful but require engineering skills—don’t choose them for simple ingestion scenarios.

Accessing Data Without Ingesting

1. OneLake Shortcuts

Best for:

  • Avoiding data duplication
  • Reusing data across workspaces
  • Accessing external storage

Key characteristics:

  • Logical reference only (no copy)
  • Supports ADLS Gen2 and Amazon S3
  • Appears native in Lakehouse tables or files

Exam tip:
Shortcuts are often the best answer when the question mentions avoiding duplication or reducing storage cost.

2. DirectQuery

Best for:

  • Near-real-time data access
  • Large datasets that cannot be imported
  • Centralized source-of-truth systems

Key characteristics:

  • Queries run against the source system
  • Performance depends on source
  • Limited modeling flexibility compared to Import

Exam tip:
Expect trade-off questions involving DirectQuery vs. Import.

3. Real-Time Access (Eventstreams / KQL)

Best for:

  • Streaming and telemetry data
  • Operational and real-time analytics

Key characteristics:

  • Event-driven ingestion
  • Supports near-real-time dashboards
  • Often discovered via Real-Time hub

Exam tip:
Use real-time ingestion when freshness is measured in seconds, not hours.

Choosing the Right Approach (Exam-Critical)

You should be able to decide based on these factors:

RequirementBest Option
Reusable ingestion logicDataflows Gen2
High-volume copyData pipelines
Complex transformationsNotebooks
Avoid duplicationOneLake shortcuts
Near real-time reportingDirectQuery / Eventstreams
Governance and trustIngestion + endorsement

Governance and Security Considerations

  • Ingested data can inherit sensitivity labels
  • Access-based methods rely on source permissions
  • Workspace roles determine who can ingest or access data
  • Endorsed datasets should be preferred for reuse

DP-600 often frames ingestion questions within a governance context.

Common Exam Scenarios

You may be asked to:

  • Choose between ingesting data or accessing it directly
  • Identify when shortcuts are preferable to ingestion
  • Select the right tool for a specific ingestion pattern
  • Balance data freshness vs. performance
  • Reduce duplication across workspaces

Best Practices to Remember

  • Ingest when performance and modeling flexibility are required
  • Access when freshness, cost, or duplication is a concern
  • Centralize ingestion logic for reuse
  • Prefer Fabric-native patterns over external tools
  • Let business requirements drive architectural decisions

Key Takeaway
For the DP-600 exam, “Ingest or access data as needed” is about making intentional, informed choices. Microsoft Fabric provides multiple ways to bring data into analytics solutions, and the correct approach depends on scale, freshness, reuse, governance, and cost. Understanding why one method is better than another is far more important than memorizing features.

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions (for example, low code/no code, large dataset, high-volume data, reuse, complex transformations)
  • Expect scenario-based questions rather than direct definitions

Also, keep in mind that …

  • DP-600 questions often include multiple valid options, but only one that best aligns with the scenario’s constraints. Always identify and consider factors such as:
    • Data volume
    • Freshness requirements
    • Reuse and duplication concerns
    • Transformation complexity

1. What is the primary difference between ingesting data and accessing data in Microsoft Fabric?

A. Ingested data cannot be secured
B. Accessed data is always slower
C. Ingesting copies data into OneLake, while accessing queries data in place
D. Accessed data requires a gateway

Correct Answer: C

Explanation:
Ingestion physically copies data into Fabric-managed storage (OneLake), while access-based approaches query or reference data where it already exists.

2. Which option is BEST when the goal is to avoid duplicating large datasets across multiple workspaces?

A. Import mode
B. Dataflows Gen2
C. OneLake shortcuts
D. Notebooks

Correct Answer: C

Explanation:
OneLake shortcuts allow data to be referenced without copying it, making them ideal for reuse and cost control.

3. A team needs reusable, low-code ingestion logic with scheduled refresh. Which Fabric feature should they use?

A. Spark notebooks
B. Data pipelines
C. Dataflows Gen2
D. DirectQuery

Correct Answer: C

Explanation:
Dataflows Gen2 provide Power Query–based ingestion with refresh scheduling and reuse across Fabric items.

4. Which ingestion method is MOST appropriate for complex transformations requiring custom logic?

A. Dataflows Gen2
B. Copy activity in pipelines
C. OneLake shortcuts
D. Spark notebooks

Correct Answer: D

Explanation:
Spark notebooks offer full control over transformation logic and are suited for complex, large-scale processing.

5. When should DirectQuery be preferred over Import mode?

A. When the dataset is small
B. When data freshness is critical
C. When transformations are complex
D. When performance must be maximized

Correct Answer: B

Explanation:
DirectQuery is preferred when near-real-time access to data is required, even though performance depends on the source system.

6. Which Fabric component is BEST suited for orchestrating high-volume data ingestion with dependencies and retries?

A. Dataflows Gen2
B. Data pipelines
C. Semantic models
D. Power BI Desktop

Correct Answer: B

Explanation:
Data pipelines are designed for orchestration, handling large volumes of data, scheduling, and dependency management.

7. A dataset is queried infrequently but must support advanced modeling features. Which approach is most appropriate?

A. DirectQuery
B. Access via shortcut
C. Import into OneLake
D. Eventstream ingestion

Correct Answer: C

Explanation:
Import mode supports full modeling capabilities and high query performance, making it suitable even for infrequently accessed data.

8. Which scenario best fits the use of real-time ingestion methods such as Eventstreams or KQL databases?

A. Monthly financial reporting
B. Static reference data
C. IoT telemetry and operational monitoring
D. Slowly changing dimensions

Correct Answer: C

Explanation:
Real-time ingestion is designed for continuous, event-driven data such as IoT telemetry and operational metrics.

9. Why might ingesting data be preferred over accessing it directly?

A. It always reduces storage costs
B. It eliminates the need for security
C. It improves performance and modeling flexibility
D. It avoids data refresh

Correct Answer: C

Explanation:
Ingesting data into OneLake enables faster query performance and full support for modeling features.

10. Which factor is MOST important when deciding between ingesting data and accessing it?

A. The color of the dashboard
B. The number of reports
C. Business requirements such as freshness, scale, and governance
D. The Fabric region

Correct Answer: C

Explanation:
The decision to ingest or access data should be driven by business needs, including performance, freshness, cost, and governance—not technical convenience alone.

SQL Tips: How to rename a column in a table – Oracle database – Oracle SQL

At times you will need to change the name of a column in an existing table. If you are not changing the data type, it is just one statement / step that needs to be executed. However, I strongly recommend that you also do a backup step, especially if you’re making the change in a production environment, just in case of an unexpected issue.

If you choose to do the backup, you may perform this with a “create-table-as-select” statement in this form:

create table [table_name_backup] as select * from [table_name];

Here is an example of the above statement:

create table EMPLOYEES_BKUP as select * from EMPLOYEES;

Now that the table you are modifying is all backed up, you can proceed to rename the column.

The rename SQL statement would take this form:

alter table [table_name] rename column [existing_column_name] to [new_column_name];

An example of the statement:

alter table EMPLOYEES rename column SEX to GENDER;

Thanks for reading! I hope you found this information useful.

Oracle Error when table or other object has the same name as the schema name

We recently had a situation where a procedure was running fine in 2 environments but was failing in another. During debugging, it was determined that if the schema prefix was removed from the procedure call, it would run fine, otherwise it fails.

The following error was produced:

ERROR at line 1:

ORA-06550: line 1, column 14:

PLS-00302: component ‘MyProcedure’ must be declared

ORA-06550: line 1, column 7:

PL/SQL: Statement ignored

After some research, the DBA found a web post that indicated that this error is generated if you have an object with the same name as the schema.

You can check if you have any such objects by running this SQL command:

SQL> select * from dba_objects where object_name = ‘Your_Schema_Name’;

(of course, where “Your_Schema_Name” is the actual name of your schema)

If you do, then you should rename the object or remove it if it is no longer needed. Of course, if it is a valid object that is being used, you will need to rename it in all the places in which it is being used.

Thanks for reading! Good luck on your data journey!

BI Application getting ORA-02391 error

Last week we rolled out a new dashboard that uses a new data source.
In one of our BI environments, the application was throwing an error:
“ORA-02391: exceeded simultaneous SESSIONS_PER_USER limit at OCI call OCISessionBegin

This is an Oracle Database error, and not an error directly from the BI Application.

For the “ORA-02391: exceeded simultaneous SESSIONS_PER_USER limit” error …
The Cause is:   An attempt was made to exceed the maximum number of concurrent sessions allowed by the SESSIONS_PER_USER clause of the user profile.
And the Action for resolution is:   End one or more concurrent sessions or ask the database administrator to increase the SESSIONS_PER_USER limit of the user profile.

Turns out the SESSIONS_PER_USER parameter was set too low; it was set to 3 for the user being used to access the database from the BI application. This error could have also been observed from an ETL tool accessing the database with an ID with the same parameter setting.

One of the DBAs bumped this parameter up to 30 for the user, and that resolved the issue.
We requested for this change to be done on the BI application databases in all the environments – Development, Test, QA, and Production.

Although all seems to be well, we will now monitor to see how many sessions the application is using and if there is any negative impact on the source application. This will allow us to determine if we need to make any other adjustments.

Thanks for reading. I hope you found this information useful.

BI Application getting ORA-00257 Error

One day this week, we got the following error showing up on our BI dashboards.
“ORA-00257: Archiver error. Connect AS SYSDBA only until resolved.”
This is an Oracle database error (which you may guess based on the “ORA”), and not an error directly from BI application.

If you get this error, it means that the database redo logs are filled up, and cannot be archived due to lack of space on the designated archive area or some other issue. In our case, the “some other issue” was caused by some issues with “commvault”, a software application used for data backup and recovery, among other things.

When this happens, if a user tries to connect to the database, such as the BI Application user in our case, the database will not allow the new connection. The only exception is SYSDBA users will be allowed to connect.

If you are not the database administrator (DBA), you will most likely work with your DBA (as we do) to get this error resolved.
After the issue that caused the problem is resolved and the redo logs are cleared, then the database, and therefore the BI application, will allow new connections as normal.

Thanks for reading and I hope you found this helpful.

Connecting to Microsoft SQL Server database from Oracle SQL Developer

If you work primarily with Oracle databases, you may use SQL Developer. But you may also need to connect to Microsoft SQL Server databases and not necessarily want to install a new front-end database tool, such as Microsoft SQL Server Management Studio (SSMS).  You can connect to SQL Server from SQL Developer.

First, download the appropriate JDBC Driver for the version of SQL Server that you need to connect to. Then follow the steps in the video at the link below on the Oracle website.

https://www.oracle.com/technetwork/developer-tools/sql-developer/sql-server-connection-viewlet-swf-089886.html

Good luck.

 

Work-around Solution for Oracle Database Error ORA-01792: maximum number of columns in a table or view is 1000

When you get this Oracle database error message …

Error message: Caused By: java.sql.SQLSyntaxErrorException: ORA-01792: maximum number of columns in a table or view is 1000

This may be a solution for you …

There is a workaround … set the “_fix_control” parameter to ‘17376322:OFF‘.

You can use one of the following statements to set the parameter:

alter session set "_fix_control" = '17376322:OFF';

or

alter system set "_fix_control" = '17376322:OFF';

More information can be found in the following Oracle Documents –  Doc ID 1956038.1 and Doc ID 1951689.1.