Category: Data Science

AI in Manufacturing: From Smart Factories to Self-Optimizing Operations

“AI in …” series

Manufacturing has always been about efficiency, quality, and scale. What’s changed is the speed and intelligence with which manufacturers can now operate. AI is moving factories beyond basic automation into adaptive, data-driven systems that can predict problems, optimize production, and continuously improve outcomes.

Across discrete manufacturing, process manufacturing, automotive, electronics, and industrial equipment, AI is becoming a core pillar of digital transformation.


How AI Is Being Used in Manufacturing Today

AI is embedded across the manufacturing value chain:

Predictive Maintenance

  • Siemens uses AI models within its MindSphere platform to predict equipment failures before they happen, reducing unplanned downtime.
  • GE Aerospace applies machine learning to sensor data from jet engines to predict maintenance needs and extend asset life.

Quality Inspection & Defect Detection

  • BMW uses computer vision and deep learning to inspect welds, paint finishes, and component alignment on production lines.
  • Foxconn applies AI-powered visual inspection to detect microscopic defects in electronics manufacturing.

Production Planning & Scheduling

  • AI optimizes production schedules based on demand forecasts, machine availability, and supply constraints.
  • Bosch uses AI-driven planning systems to dynamically adjust production based on real-time conditions.

Robotics & Intelligent Automation

  • Collaborative robots (“cobots”) powered by AI adapt to human movements and changing tasks.
  • ABB integrates AI into robotics for flexible assembly and material handling.

Supply Chain & Inventory Optimization

  • Procter & Gamble uses AI to predict demand shifts and optimize global supply chains.
  • Manufacturers apply AI to identify supplier risks, logistics bottlenecks, and inventory imbalances.

Energy Management & Sustainability

  • AI systems optimize energy consumption across plants, helping manufacturers reduce costs and carbon emissions.

Tools, Technologies, and Forms of AI in Use

Manufacturing AI typically blends operational technology (OT) with advanced analytics:

  • Machine Learning & Deep Learning
    Used for predictive maintenance, forecasting, quality control, and anomaly detection.
  • Computer Vision
    Core to automated inspection, safety monitoring, and process verification.
  • Industrial IoT (IIoT) + AI
    Sensor data from machines feeds AI models in near real time.
  • Digital Twins
    Virtual models of factories, production lines, or equipment simulate scenarios and optimize performance.
    • Siemens Digital Twin and Dassault Systèmes 3DEXPERIENCE are widely used platforms.
  • AI Platforms & Manufacturing Suites
    • Siemens MindSphere
    • PTC ThingWorx
    • Rockwell Automation FactoryTalk Analytics
    • Azure AI and AWS IoT Greengrass for scalable AI deployment
  • Edge AI
    AI models run directly on machines or local devices to reduce latency and improve reliability.

Benefits Manufacturers Are Realizing

Manufacturers that deploy AI effectively are seeing clear advantages:

  • Reduced Downtime through predictive maintenance
  • Higher Product Quality and fewer defects
  • Lower Operating Costs via optimized processes
  • Improved Throughput and Yield
  • Greater Flexibility in responding to demand changes
  • Enhanced Worker Safety through AI-based monitoring

In capital-intensive environments, even small efficiency gains can translate into significant financial impact.


Pitfalls and Challenges

AI adoption in manufacturing is not without obstacles:

Data Readiness Issues

  • Legacy equipment often lacks sensors or produces inconsistent data, limiting AI effectiveness.

Integration Complexity

  • Bridging IT systems with OT environments is technically and organizationally challenging.

Skills Gaps

  • Manufacturers often struggle to find talent that understands both AI and industrial processes.

High Upfront Costs

  • Computer vision systems, sensors, and edge devices require capital investment.

Over-Ambitious Projects

  • Some AI initiatives fail because they attempt full “smart factory” transformations instead of targeted improvements.

Where AI Is Headed in Manufacturing

The next phase of AI in manufacturing is focused on autonomy and adaptability:

  • Self-Optimizing Factories
    AI systems that automatically adjust production parameters without human intervention.
  • Generative AI for Engineering and Operations
    Used to generate process documentation, maintenance instructions, and design alternatives.
  • More Advanced Digital Twins
    Real-time, continuously updated simulations of entire plants and supply networks.
  • Human–AI Collaboration on the Shop Floor
    AI copilots assisting operators, engineers, and maintenance teams.
  • AI-Driven Sustainability
    Optimization of materials, energy use, and waste reduction to meet ESG goals.

How Manufacturers Can Gain an Advantage

To compete effectively in this rapidly evolving landscape, manufacturers should:

  1. Start with High-Value, Operational Use Cases
    Predictive maintenance and quality inspection often deliver fast ROI.
  2. Invest in Data Infrastructure and IIoT
    Reliable, high-quality sensor data is foundational.
  3. Adopt a Phased Approach
    Scale proven pilots rather than pursuing all-encompassing transformations.
  4. Bridge IT and OT Teams
    Cross-functional collaboration is critical for success.
  5. Upskill the Workforce
    Engineers and operators who understand AI amplify its impact.
  6. Design for Explainability and Trust
    Especially important in safety-critical and regulated environments.

Final Thoughts

AI is reshaping manufacturing from the factory floor to the global supply chain. The most successful manufacturers aren’t chasing AI for its own sake—they’re using it to solve concrete operational problems, empower workers, and build more resilient, intelligent operations.

In manufacturing, AI isn’t just about automation—it’s about continuous learning at industrial scale.

AI Career Options for Early-Career Professionals and New Graduates

Artificial Intelligence is shaping nearly every industry, but breaking into AI right out of college can feel overwhelming. The good news is that you don’t need a PhD or years of experience to start a successful AI-related career. Many AI roles are designed specifically for early-career talent, blending technical skills with problem-solving, communication, and business understanding.

This article outlines excellent AI career options for people just entering the workforce, explaining what each role involves, why it’s a strong choice, and how to prepare with the right skills, tools, and learning resources.


1. AI / Machine Learning Engineer (Junior)

What It Is & What It Involves

Machine Learning Engineers build, train, test, and deploy machine learning models. Junior roles typically focus on:

  • Implementing existing models
  • Cleaning and preparing data
  • Running experiments
  • Supporting senior engineers

Why It’s a Good Option

  • High demand and strong salary growth
  • Clear career progression
  • Central role in AI development

Skills & Preparation Needed

Technical Skills

  • Python
  • SQL
  • Basic statistics & linear algebra
  • Machine learning fundamentals
  • Libraries: scikit-learn, TensorFlow, PyTorch

Where to Learn

  • Coursera (Andrew Ng ML specialization)
  • Fast.ai
  • Kaggle projects
  • University CS or data science coursework

Difficulty Level: ⭐⭐⭐⭐ (Moderate–High)


2. Data Analyst (AI-Enabled)

What It Is & What It Involves

Data Analysts use AI tools to analyze data, generate insights, and support decision-making. Tasks often include:

  • Data cleaning and visualization
  • Dashboard creation
  • Using AI tools to speed up analysis
  • Communicating insights to stakeholders

Why It’s a Good Option

  • Very accessible for new graduates
  • Excellent entry point into AI
  • Builds strong business and technical foundations

Skills & Preparation Needed

Technical Skills

  • SQL
  • Excel
  • Python (optional but helpful)
  • Power BI / Tableau
  • AI tools (ChatGPT, Copilot, AutoML)

Where to Learn

  • Microsoft Learn
  • Google Data Analytics Certificate
  • Kaggle datasets
  • Internships and entry-level analyst roles

Difficulty Level: ⭐⭐ (Low–Moderate)


3. Prompt Engineer / AI Specialist (Entry Level)

What It Is & What It Involves

Prompt Engineers design, test, and optimize instructions for AI systems to get reliable and accurate outputs. Entry-level roles focus on:

  • Writing prompts
  • Testing AI behavior
  • Improving outputs for business use cases
  • Supporting AI adoption across teams

Why It’s a Good Option

  • Low technical barrier
  • High demand across industries
  • Great for strong communicators and problem-solvers

Skills & Preparation Needed

Key Skills

  • Clear writing and communication
  • Understanding how LLMs work
  • Logical thinking
  • Domain knowledge (marketing, analytics, HR, etc.)

Where to Learn

  • OpenAI documentation
  • Prompt engineering guides
  • Hands-on practice with ChatGPT, Claude, Gemini
  • Real-world experimentation

Difficulty Level: ⭐⭐ (Low–Moderate)


4. AI Product Analyst / Associate Product Manager

What It Is & What It Involves

This role sits between business, engineering, and AI teams. Responsibilities include:

  • Defining AI features
  • Translating business needs into AI solutions
  • Analyzing product performance
  • Working with data and AI engineers

Why It’s a Good Option

  • Strong career growth
  • Less coding than engineering roles
  • Excellent mix of strategy and technology

Skills & Preparation Needed

Key Skills

  • Basic AI/ML concepts
  • Data analysis
  • Product thinking
  • Communication and stakeholder management

Where to Learn

  • Product management bootcamps
  • AI fundamentals courses
  • Internships or associate PM roles
  • Case studies and product simulations

Difficulty Level: ⭐⭐⭐ (Moderate)


5. AI Research Assistant / Junior Data Scientist

What It Is & What It Involves

These roles support AI research and experimentation, often in academic, healthcare, or enterprise environments. Tasks include:

  • Running experiments
  • Analyzing model performance
  • Data exploration
  • Writing reports and documentation

Why It’s a Good Option

  • Strong foundation for advanced AI careers
  • Exposure to real-world research
  • Great for analytical thinkers

Skills & Preparation Needed

Technical Skills

  • Python or R
  • Statistics and probability
  • Data visualization
  • ML basics

Where to Learn

  • University coursework
  • Research internships
  • Kaggle competitions
  • Online ML/statistics courses

Difficulty Level: ⭐⭐⭐⭐ (Moderate–High)


6. AI Operations (AIOps) / ML Operations (MLOps) Associate

What It Is & What It Involves

AIOps/MLOps professionals help deploy, monitor, and maintain AI systems. Entry-level work includes:

  • Model monitoring
  • Data pipeline support
  • Automation
  • Documentation

Why It’s a Good Option

  • Growing demand as AI systems scale
  • Strong alignment with data engineering
  • Less math-heavy than research roles

Skills & Preparation Needed

Technical Skills

  • Python
  • SQL
  • Cloud basics (Azure, AWS, GCP)
  • CI/CD concepts
  • ML lifecycle understanding

Where to Learn

  • Cloud provider learning paths
  • MLOps tutorials
  • GitHub projects
  • Entry-level data engineering roles

Difficulty Level: ⭐⭐⭐ (Moderate)


7. AI Consultant / AI Business Analyst (Entry Level)

What It Is & What It Involves

AI consultants help organizations understand and implement AI solutions. Entry-level roles focus on:

  • Use-case analysis
  • AI tool evaluation
  • Process improvement
  • Client communication

Why It’s a Good Option

  • Exposure to multiple industries
  • Strong soft-skill development
  • Fast career progression

Skills & Preparation Needed

Key Skills

  • Business analysis
  • AI fundamentals
  • Presentation and communication
  • Problem-solving

Where to Learn

  • Business analytics programs
  • AI fundamentals courses
  • Consulting internships
  • Case study practice

Difficulty Level: ⭐⭐⭐ (Moderate)


8. AI Content & Automation Specialist

What It Is & What It Involves

This role focuses on using AI to automate content, workflows, and internal processes. Tasks include:

  • Building automations
  • Creating AI-generated content
  • Managing tools like Zapier, Notion AI, Copilot

Why It’s a Good Option

  • Very accessible for non-technical graduates
  • High demand in marketing and operations
  • Rapid skill acquisition

Skills & Preparation Needed

Key Skills

  • Workflow automation
  • AI tools usage
  • Creativity and organization
  • Basic scripting (optional)

Where to Learn

  • Zapier and Make tutorials
  • Hands-on projects
  • YouTube and online courses
  • Real business use cases

Difficulty Level: ⭐⭐ (Low–Moderate)


How New Graduates Should Prepare for AI Careers

1. Build Foundations

  • Python or SQL
  • Data literacy
  • AI concepts (not just tools)

2. Practice with Real Projects

  • Personal projects
  • Internships
  • Freelance or volunteer work
  • Kaggle or GitHub portfolios

3. Learn AI Tools Early

  • ChatGPT, Copilot, Gemini
  • AutoML platforms
  • Visualization and automation tools

4. Focus on Communication

AI careers, and careers in general, reward those who can explain complex ideas simply.


Final Thoughts

AI careers are no longer limited to researchers or elite engineers. For early-career professionals, the best path is often a hybrid role that combines AI tools, data, and business understanding. Starting in these roles builds confidence, experience, and optionality—allowing you to grow into more specialized AI positions over time.
And the advice that many professionals give for gaining knowledge and breaking into the space is to “get your hands dirty”.

Good luck on your data journey!

AI in Retail and eCommerce: Personalization at Scale Meets Operational Intelligence

“AI in …” series

Retail and eCommerce sit at the intersection of massive data volume, thin margins, and constantly shifting customer expectations. From predicting what customers want to buy next to optimizing global supply chains, AI has become a core capability—not a nice-to-have—for modern retailers.

What makes retail especially interesting is that AI touches both the customer-facing experience and the operational backbone of the business, often at the same time.


How AI Is Being Used in Retail and eCommerce Today

AI adoption in retail spans the full value chain:

Personalized Recommendations & Search

  • Amazon uses machine learning models to power its recommendation engine, driving a significant portion of total sales through “customers also bought” and personalized homepages.
  • Netflix-style personalization, but for shopping: retailers tailor product listings, pricing, and promotions in real time.

Demand Forecasting & Inventory Optimization

  • Walmart applies AI to forecast demand at the store and SKU level, accounting for seasonality, local events, and weather.
  • Target uses AI-driven forecasting to reduce stockouts and overstocks, improving both customer satisfaction and margins.

Dynamic Pricing & Promotions

  • Retailers use AI to adjust prices based on demand, competitor pricing, inventory levels, and customer behavior.
  • Amazon is the most visible example, adjusting prices frequently using algorithmic pricing models.

Customer Service & Virtual Assistants

  • Shopify merchants use AI-powered chatbots for order tracking, returns, and product questions.
  • H&M and Sephora deploy conversational AI for styling advice and customer support.

Fraud Detection & Payments

  • AI models detect fraudulent transactions in real time, especially important for eCommerce and buy-now-pay-later (BNPL) models.

Computer Vision in Physical Retail

  • Amazon Go stores use computer vision, sensors, and deep learning to enable cashierless checkout.
  • Zara (Inditex) uses computer vision to analyze in-store traffic patterns and product engagement.

Tools, Technologies, and Forms of AI in Use

Retailers typically rely on a mix of foundational and specialized AI technologies:

  • Machine Learning & Deep Learning
    Used for forecasting, recommendations, pricing, and fraud detection.
  • Natural Language Processing (NLP)
    Powers chatbots, sentiment analysis of reviews, and voice-based shopping.
  • Computer Vision
    Enables cashierless checkout, shelf monitoring, loss prevention, and in-store analytics.
  • Generative AI & Large Language Models (LLMs)
    Used for product description generation, marketing copy, personalized emails, and internal copilots.
  • Retail AI Platforms
    • Salesforce Einstein for personalization and customer insights
    • Adobe Sensei for content, commerce, and marketing optimization
    • Shopify Magic for product descriptions, FAQs, and merchant assistance
    • AWS, Azure, and Google Cloud AI for scalable ML infrastructure

Benefits Retailers Are Realizing

Retailers that have successfully adopted AI report measurable benefits:

  • Higher Conversion Rates through personalization
  • Improved Inventory Turns and reduced waste
  • Lower Customer Service Costs via automation
  • Faster Time to Market for campaigns and promotions
  • Better Customer Loyalty through more relevant, consistent experiences

In many cases, AI directly links customer experience improvements to revenue growth.


Pitfalls and Challenges

Despite widespread adoption, AI in retail is not without risk:

Bias and Fairness Issues

  • Recommendation and pricing algorithms can unintentionally disadvantage certain customer groups or reinforce biased purchasing patterns.

Data Quality and Fragmentation

  • Poor product data, inconsistent customer profiles, or siloed systems limit AI effectiveness.

Over-Automation

  • Some retailers have over-relied on AI-driven customer service, frustrating customers when human support is hard to reach.

Cost vs. ROI Concerns

  • Advanced AI systems (especially computer vision) can be expensive to deploy and maintain, making ROI unclear for smaller retailers.

Failed or Stalled Pilots

  • AI initiatives sometimes fail because they focus on experimentation rather than operational integration.

Where AI Is Headed in Retail and eCommerce

Several trends are shaping the next phase of AI in retail:

  • Hyper-Personalization
    Experiences tailored not just to the customer, but to the moment—context, intent, and channel.
  • Generative AI at Scale
    Automated creation of product content, marketing campaigns, and even storefront layouts.
  • AI-Driven Merchandising
    Algorithms suggesting what products to carry, where to place them, and how to price them.
  • Blended Physical + Digital Intelligence
    More retailers combining in-store computer vision with online behavioral data.
  • AI as a Copilot for Merchants and Marketers
    Helping teams plan assortments, campaigns, and promotions faster and with more confidence.

How Retailers Can Gain an Advantage

To compete effectively in this fast-moving environment, retailers should:

  1. Focus on Data Foundations First
    Clean product data, unified customer profiles, and reliable inventory systems are essential.
  2. Start with Customer-Critical Use Cases
    Personalization, availability, and service quality usually deliver the fastest ROI.
  3. Balance Automation with Human Oversight
    AI should augment merchandisers, marketers, and store associates—not replace them outright.
  4. Invest in Responsible AI Practices
    Transparency, fairness, and explainability build trust with customers and regulators.
  5. Upskill Retail Teams
    Merchants and marketers who understand AI can use it more creatively and effectively.

Final Thoughts

AI is rapidly becoming the invisible engine behind modern retail and eCommerce. The winners won’t necessarily be the companies with the most advanced algorithms—but those that combine strong data foundations, thoughtful AI governance, and a relentless focus on customer experience.

In retail, AI isn’t just about selling more—it’s about selling smarter, at scale.

Best Data Certifications for 2026

A Quick Guide through some of the top data certifications for 2026

As data platforms continue to converge analytics, engineering, and AI, certifications in 2026 are less about isolated tools and more about end-to-end data value delivery. The certifications below stand out because they align with real-world enterprise needs, cloud adoption, and modern data architectures.

Each certification includes:

  • What it is
  • Why it’s important in 2026
  • How to achieve it
  • Difficulty level

1. DP-600: Microsoft Fabric Analytics Engineer Associate

What it is

DP-600 validates skills in designing, building, and deploying analytics solutions using Microsoft Fabric, including lakehouses, data warehouses, semantic models, and Power BI.

Why it’s important

Microsoft Fabric represents Microsoft’s unified analytics vision, merging data engineering, BI, and governance into a single SaaS platform. DP-600 is quickly becoming one of the most relevant certifications for analytics professionals working in Microsoft ecosystems.

It’s especially valuable because it:

  • Bridges data engineering and analytics
  • Emphasizes business-ready semantic models
  • Aligns directly with enterprise Power BI adoption

How to achieve it

Difficulty level

⭐⭐⭐☆☆ (Intermediate)
Best for analysts or engineers with Power BI or SQL experience.


2. Microsoft Certified: Data Analyst Associate (PL-300)

What it is

A Power BI–focused certification covering data modeling, DAX, visualization, and analytics delivery.

Why it’s important

Power BI remains one of the most widely used BI tools globally. PL-300 proves you can convert data into clear, decision-ready insights.

PL-300 pairs exceptionally well with DP-600 for professionals moving from reporting to full analytics engineering.

How to achieve it

  • Learn Power BI Desktop, DAX, and data modeling
  • Complete hands-on labs
  • Pass the PL-300 exam

Difficulty level

⭐⭐☆☆☆
Beginner to intermediate.


3. Google Data Analytics Professional Certificate

What it is

An entry-level certification covering analytics fundamentals: spreadsheets, SQL, data cleaning, and visualization.

Why it’s important

Ideal for newcomers, this certificate demonstrates foundational data literacy and structured analytical thinking.

How to achieve it

  • Complete the Coursera program
  • Finish hands-on case studies and a capstone

Difficulty level

⭐☆☆☆☆
Beginner-friendly.


4. IBM Data Analyst / IBM Data Science Professional Certificates

What they are

Two progressive certifications:

  • Data Analyst focuses on analytics and visualization
  • Data Science adds Python, ML basics, and modeling

Why they’re important

IBM’s certifications are respected for their hands-on, project-based approach, making them practical for job readiness.

How to achieve them

  • Complete Coursera coursework
  • Submit projects and capstones

Difficulty level

  • Data Analyst: ⭐☆☆☆☆
  • Data Science: ⭐⭐☆☆☆

5. Google Professional Data Engineer

What it is

A certification for building scalable, reliable data pipelines on Google Cloud.

Why it’s important

Frequently ranked among the most valuable data engineering certifications, it focuses on real-world system design rather than memorization.

How to achieve it

  • Learn BigQuery, Dataflow, Pub/Sub, and ML pipelines
  • Gain hands-on GCP experience
  • Pass the professional exam

Difficulty level

⭐⭐⭐⭐☆
Advanced.


6. AWS Certified Data Engineer – Associate

What it is

Validates data ingestion, transformation, orchestration, and storage skills on AWS.

Why it’s important

AWS remains dominant in cloud infrastructure. This certification proves you can build production-grade data pipelines using AWS-native services.

How to achieve it

  • Study Glue, Redshift, Kinesis, Lambda, S3
  • Practice SQL and Python
  • Pass the AWS exam

Difficulty level

⭐⭐⭐☆☆
Intermediate.


7. Microsoft Certified: Fabric Data Engineer Associate (DP-700)

What it is

Focused on data engineering workloads in Microsoft Fabric, including Spark, pipelines, and lakehouse architectures.

Why it’s important

DP-700 complements DP-600 by validating engineering depth within Fabric. Together, they form a powerful Microsoft analytics skill set.

How to achieve it

  • Learn Spark, pipelines, and Fabric lakehouses
  • Pass the DP-700 exam

Difficulty level

⭐⭐⭐☆☆
Intermediate.


8. Databricks Certified Data Engineer Associate

What it is

A certification covering Apache Spark, Delta Lake, and lakehouse architecture using Databricks.

Why it’s important

Databricks is central to modern analytics and AI workloads. This certification signals big data and performance expertise.

How to achieve it

  • Practice Spark SQL and Delta Lake
  • Study Databricks workflows
  • Pass the certification exam

Difficulty level

⭐⭐⭐☆☆
Intermediate.


9. Certified Analytics Professional (CAP)

What it is

A vendor-neutral certification emphasizing analytics lifecycle management, problem framing, and decision-making.

Why it’s important

CAP is ideal for analytics leaders and managers, demonstrating credibility beyond tools and platforms.

How to achieve it

  • Meet experience requirements
  • Pass the CAP exam
  • Maintain continuing education

Difficulty level

⭐⭐⭐⭐☆
Advanced.


10. SnowPro Advanced: Data Engineer

What it is

An advanced Snowflake certification focused on performance optimization, streams, tasks, and advanced architecture.

Why it’s important

Snowflake is deeply embedded in enterprise analytics. This cert signals high-value specialization.

How to achieve it

  • Earn SnowPro Core
  • Gain deep Snowflake experience
  • Pass the advanced exam

Difficulty level

⭐⭐⭐⭐☆
Advanced.


Summary Table

CertificationPrimary FocusDifficulty
DP-600 (Fabric Analytics Engineer)Analytics Engineering⭐⭐⭐☆☆
PL-300BI & Reporting⭐⭐☆☆☆
Google Data AnalyticsEntry Analytics⭐☆☆☆☆
IBM Data Analyst / ScientistAnalytics / DS⭐–⭐⭐
Google Pro Data EngineerCloud DE⭐⭐⭐⭐☆
AWS Data Engineer AssociateCloud DE⭐⭐⭐☆☆
DP-700 (Fabric DE)Data Engineering⭐⭐⭐☆☆
Databricks DE AssociateBig Data⭐⭐⭐☆☆
CAPAnalytics Leadership⭐⭐⭐⭐☆
SnowPro Advanced DESnowflake⭐⭐⭐⭐☆

Final Thoughts

For 2026, the standout trend is clear:

  • Unified platforms (like Microsoft Fabric)
  • Analytics engineering over isolated BI
  • Business-ready data models alongside pipelines

Two of the strongest certification combinations today:

  • DP-600 + PL-300 (analytics) or
  • DP-600 + DP-700 (engineering)

Good luck on your data journey in 2026!

Identify and Resolve Duplicate Data, Missing Data, or Null Values

This post is a part of the DP-600: Implementing Analytics Solutions Using Microsoft Fabric Exam Prep Hub; and this topic falls under these sections: 
Prepare data
--> Transform data
--> Identify and resolve duplicate data, missing data, or null values

Ensuring data quality is foundational for reliable analytics. Duplicate records, missing values, and nulls can lead to inaccurate aggregations, misleading insights, and broken joins. Microsoft Fabric provides multiple tools and techniques to identify, investigate, and resolve these issues during data preparation.

Why Data Quality Matters

Poor data quality can cause:

  • Incorrect business metrics (e.g., inflated counts)
  • Failed joins or mismatches
  • Incorrect aggregates or KPIs
  • Discrepancies across reports

The DP-600 exam expects you to know how to detect and fix these issues using Fabric’s transformation tools — without degrading performance or losing important data.

Key Data Quality Issues

1. Duplicate Data

Duplicates occur when the same record appears multiple times.
Common causes:

  • Repeated ingestion jobs
  • Incorrect joins
  • Source system errors

Impact of duplicates:

  • Inflated metrics
  • Misleading counts
  • Distorted analytics

2. Missing Data

Missing data refers to complete absence of expected rows for certain categories or time periods.

Examples:

  • No sales records for a specific store in a date range
  • Missing customer segments

Impact:

  • Bias in analysis
  • Understated performance

3. Null Values

Nulls represent unknown or undefined values in a dataset.

Common cases:

  • Missing customer name
  • Missing numeric values
  • Unpopulated fields in incomplete records

Consequences:

  • SQL functions may ignore nulls
  • Aggregations may be skewed
  • Joins may fail or produce incorrect results

Tools and Techniques in Microsoft Fabric

1. Power Query (Dataflows Gen2 / Lakehouse)

Power Query provides a visual and programmatic interface to clean data:

  • Remove duplicates:
    Home → Remove Rows → Remove Duplicates
  • Replace or fill nulls:
    Transform → Replace Values
    Or use Fill Up / Fill Down
  • Filter nulls:
    Filter rows where column is null or not null

Benefits:

  • No-code/low-code
  • Reusable transformation steps
  • Easy preview and validation

2. SQL (Warehouses / Lakehouse SQL Analytics)

Using SQL, you can identify and fix issues:

Detect duplicates:

SELECT Col1, Col2, COUNT(*) AS Cnt
FROM table
GROUP BY Col1, Col2
HAVING COUNT(*) > 1;

Remove duplicates (example pattern):

WITH RankedRows AS (
  SELECT *, ROW_NUMBER() OVER (PARTITION BY keycol ORDER BY keycol) AS rn
  FROM table
)
SELECT * FROM RankedRows WHERE rn = 1;

Replace nulls:

SELECT COALESCE(column, 0) AS column_fixed
FROM table;

3. Spark (Lakehouses via Notebooks)

Identify nulls:

df.filter(df["column"].isNull()).show()

Drop duplicates:

df.dropDuplicates(["keycol"])

Fill nulls:

df.na.fill({"column": "Unknown"})

Best Practices for Resolution

Addressing Duplicates

  • Use business keys (unique identifiers) to define duplicates
  • Validate whether duplicates are true duplicates or legitimate repeats
  • Document deduplication logic

Handling Nulls

  • Use domain knowledge to decide substitute values
    • Zero for numeric
    • “Unknown” or “Not Provided” for text
  • Preserve nulls when they carry meaning (e.g., missing responses)

Handling Missing Data

  • Understand the business meaning
    • Is absence valid?
    • Should data be imputed?
    • Or should missing rows be generated via reference tables?

Data Profiling

  • Use profiling to understand distributions and quality:
    • Column completeness
    • Unique value distribution
    • Null frequency

Data profiling helps you decide which cleaning steps are required.

When to Clean Data in Fabric

Data quality transformations should be performed:

  • Early in the pipeline (at the ingestion or transformation layer)
  • Before building semantic models
  • Before aggregations or joins
  • Before publishing curated datasets

Early cleaning prevents issues from propagating into semantic models and reports.

Exam Scenarios

In DP-600 exam questions, you might see scenarios like:

  • Metrics appear inflated due to duplicate records
  • Reports show missing date ranges
  • Joins fail due to null key values
  • Aggregations ignore null values

Your job is to choose the correct transformation action — e.g., filtering nulls, deduplicating, replacing values, or imputing missing data — and the best tool (Power Query vs SQL vs Spark).

Key Takeaways

  • Duplicate rows inflate counts and distort analytics.
  • Missing rows can bias time-series or segment analysis.
  • Null values can break joins and cause incorrect aggregation results.
  • Effective resolution relies on understanding business context and using the right Fabric tools.
  • Clean data early for better downstream performance and governance.

Final Exam Tip
If a metric doesn’t look right, think data quality first — missing or null values and duplicates are one of the most common real-world issues covered in DP-600 scenarios.

Practice Questions:

Here are 10 questions to test and help solidify your learning and knowledge. As you review these and other questions in your preparation, make sure to …

  • Identifying and understand why an option is correct (or incorrect) — not just which one
  • Look for and understand the usage scenario of keywords in exam questions to guide you
  • Expect scenario-based questions rather than direct definitions

General Exam Tips for this section
If something looks wrong in a report:

  • Too high? → Check for duplicates
  • Blank or missing? → Check for nulls or missing rows
  • Not joining correctly? → Check nulls and key integrity

Question 1

Which issue is most likely to cause inflated totals in aggregated metrics?

A. Null values in numeric columns
B. Missing rows for a time period
C. Duplicate records
D. Incorrect column data types

Correct Answer: C

Explanation:
Duplicate records result in the same data being counted more than once, which inflates sums, counts, and averages.

Question 2

In Power Query, which action is used to remove duplicate rows?

A. Filter Rows
B. Group By
C. Remove Duplicates
D. Replace Values

Correct Answer: C

Explanation:
The Remove Duplicates operation removes repeated rows based on selected columns.

Question 3

Which SQL function is commonly used to replace null values with a default value?

A. NULLIF
B. ISNULL or COALESCE
C. COUNT
D. CAST

Correct Answer: B

Explanation:
ISNULL() and COALESCE() return a specified value when a column contains NULL.

Question 4

Why can null values cause problems in joins?

A. Nulls increase query runtime
B. Nulls are treated as zero
C. Nulls never match other values
D. Nulls are automatically filtered

Correct Answer: C

Explanation:
NULL values do not match any value (including other NULLs), which can cause rows to be excluded from join results.

Question 5

Which scenario best justifies keeping null values rather than replacing them?

A. The column is used in joins
B. The null indicates “unknown” or “not applicable”
C. The column is numeric
D. The column has duplicates

Correct Answer: B

Explanation:
Nulls may carry important business meaning and should be preserved when they accurately represent missing or unknown information.

Question 6

Which Fabric tool is most appropriate for visual data profiling to identify missing and null values?

A. Power BI visuals
B. Power Query
C. Semantic models
D. Eventhouse

Correct Answer: B

Explanation:
Power Query provides built-in data profiling features such as column distribution, column quality, and column profile.

Question 7

What is the purpose of using an anti join when checking data quality?

A. To merge tables
B. To append data
C. To identify unmatched records
D. To replace null values

Correct Answer: C

Explanation:
Anti joins return rows that do not have a match in another table, making them ideal for identifying missing or orphaned records.

Question 8

Which approach is considered a best practice for handling data quality issues?

A. Fix issues only in reports
B. Clean data as late as possible
C. Resolve issues early in the pipeline
D. Ignore null values

Correct Answer: C

Explanation:
Resolving data quality issues early prevents them from propagating into semantic models and reports.

Question 9

Which Spark operation removes duplicate rows from a DataFrame?

A. filter()
B. groupBy()
C. dropDuplicates()
D. distinctColumns()

Correct Answer: C

Explanation:
dropDuplicates() removes duplicate rows based on one or more columns.

Question 10

A report is missing values for several dates. What is the most likely cause?

A. Duplicate rows
B. Incorrect aggregation logic
C. Missing source data
D. Incorrect data type conversion

Correct Answer: C

Explanation:
Missing dates usually indicate that source records are absent rather than null or duplicated.

Data Cleaning methods

Data cleaning is an essential step in the data preprocessing pipeline when preparing data for analytics or data science. It involves identifying and correcting or removing errors, inconsistencies, and inaccuracies in the dataset to improve its quality and reliability. It is essential that data is cleaned before being used in analyses, reporting, development or integration. Here are some common data cleaning methods:

Handling missing values:

  • Delete rows or columns with a high percentage of missing values if they don’t contribute significantly to the analysis.
  • Impute missing values by replacing them with a statistical measure such as mean, median, mode, or using more advanced techniques like regression imputation or k-nearest neighbors imputation.

Handling categorical variables:

  • Encode categorical variables into numerical representations using techniques like one-hot encoding, label encoding, or target encoding.

Removing duplicates:

  • Identify and remove duplicate records based on one or more key variables.
  • Be cautious when removing duplicates, as sometimes duplicated entries may be valid and intentional.

Handling outliers:

  • Identify outliers using statistical methods like z-scores, box plots, or domain knowledge.
  • Decide whether to remove outliers or transform them based on the nature of the data and the analysis goals.

Correcting inconsistent data:

  • Standardize data formats: Convert data into a consistent format (e.g., converting dates to a specific format).
  • Resolve inconsistencies: Identify and correct inconsistent values (e.g., correcting misspelled words, merging similar categories).

Dealing with irrelevant or redundant features:

  • Remove irrelevant features that do not contribute to the analysis or prediction task.
  • Identify and handle redundant features that provide similar information to avoid multicollinearity issues.

Data normalization or scaling:

  • Normalize numerical features to a common scale (e.g., min-max scaling or z-score normalization) to prevent certain features from dominating the analysis due to their larger magnitudes.

Data integrity issues:

Finally, you need to address data integrity issues.

  • Check for data integrity problems such as inconsistent data types, incorrect data ranges, or violations of business rules.
  • Resolve integrity issues by correcting or removing problematic data.

It’s important to note that the specific data cleaning methods that need to be applied to a dataset will vary depending on the nature of the dataset, the analysis goals, and domain knowledge. It’s recommended to thoroughly understand the data and consult with domain experts when preparing to perform data cleaning tasks.

Python Libraries for Data Science

Python has grown quickly to become one of the most widely used programming languages. While it’s a powerful, multi-purpose language used for creating just about any type of application, it has become a go-to language for data science, rivaling even “R”, the longtime favorite language and platform for data science.

Python’s popularity for data-based solutions has grown because of the many powerful, opensource, data-centric libraries it has available. Some of these libraries include:

NumPy

A library used for creating and manipulating multi-dimensional data arrays and can be used for handling multi-dimensional data and difficult mathematical operations.

Pandas

Pandas is a library that provides easy-to-use but high-performance data structures, such as the DataFrame, and data analysis tools.

Matplotlib

Matplotlib is a library used for data visualization such as creating histograms, bar charts, scatter plots, and much more.

SciPy

SciPy is a library that provides integration, statistics, and linear algebra packages for numerical computations.

Scikit-learn

Scikit-learn is a library used for machine learning. It is built on top of some other libraries including NumPy, Matplotlib, and SciPy.

There are many other data-centric Python libraries and some will be introduced in future articles. More can be learned here: https://www.python.org/

What is data analytics? And what are the different types of data analytics?

Data analytics is the overall process of capturing and using data to produce meaningful information, including metrics and trends, that can be used to better understand events and help make better decisions. Usually the goal is to improve the efficiency and outcomes of an operation, such as a business, a political campaign, or even an individual (such as an athlete). There are four (4) prevalent types of data analytics – descriptive, predictive, diagnostic, and prescriptive.

  1. Descriptive analytics – provides information about “what has happened”. Examples of questions answered by descriptive analytics include: How much are our sales this month and what is over year-over-year sales increase? How many website visitors did we have and how many signups?
  2. Predictive analytics – provides insight into “what may happen” in the future based on the past. Examples of questions answered by predictive analytics include: Based on previous customer service call patterns and outcomes, what is the likelihood of a customer switching to another provider? Based on a customer’s profile, how much should we charge him for insurance?
  3. Diagnostic analytics – provides information to explain “why something happened”. In addition to the direct data, this may also involve more indirect or macro data sources, such as, weather data, local or national economic data, or competitor data. And it may also involve forming logical theories about the correlation of events. Examples of questions answered by diagnostic analytics include: How effective was the marketing blitz and which channel had the most impact? Did the weather affect sales or was it the price increase?
  4. Prescriptive analytics – provides insight into “what to do to make something happen”. Examples of questions answered by prescriptive analytics include: Based on the results of our test marketing blitz campaign, if we roll out the full campaign with adjustments to the channel spread, how many additional temporary customer service staff will we need to handle the increased volume without long wait times?
The four (4) types of data analytics

Descriptive analytics is the simplest and most common form of analytics used in organizations and is widely referred to as Business Intelligence (BI). There is widespread interest in predictive analytics but less than 50% of companies currently use it as it requires additional, more expensive skills. Diagnostic and prescriptive analytics have always been around because companies have always used information from descriptive analytics to hypothesize “why things happened” and make decisions on “what to do”. But it’s the automation of these types through new methods and the integration of more data inputs that is fairly new. The latter three forms are sometimes called Advanced Analytics or Data Science.

All the types of analytics will require some form of data integration and use some of the same data in an environment, but while descriptive analytics only needs data from the time periods being analyzed and usually from a narrower data set, the predictive, prescriptive and diagnostic analytics produce better results using as much data as is available from a wider timeframe and from a broader set of sources. There is overlap with the different types of analytics because the analysis of “what may happen” is driven by “what has happened” in the past and “why it happened”; and determining “what to do” will be driven by “what has happened”, “why it happened”, and “what may happen”. Companies on the forefront of data analytics will tend to use all four types.

Salesforce Einstein Bots

What is a Salesforce Einstein Bot?

According to Salesforce a bot is “a computer program which conducts a conversation via auditory or textual methods.”.

So, before we get more into what a bot is let’s first look at the platform they are created on, Salesforce’s Einstein Analytics.

Salesforce’s Einstein Analytics provides impressive mechanisms that assist organizations and their users of the Salesforce platform to connect, communicate & interpret customer needs. By implementing elements of artificial intelligence, data mining and predictive analytics Salesforce users can get deeper insights into their customers data and begin to build an improved base of knowledge related to their business. With an underlying engine tuned for performance and a presentation layer which can display key details or high level metrics on dashboards Einstein Analytics is the next step in reporting on the health of your sales pipeline, exposing opportunities and providing suggestions to help guide you in identifying & visualizing growth which aligns to your business.

Now, back to bots …

Basically, a bot is a means to facilitate communication between humans and computers with either voice or text and subsequently executing an action tied to the input provided. Bots can learn over time to interact with humans by leveraging Salesforce’s Einstein Analytics platform and your data which resides in Salesforce and respond using Natural Language Processing. According to Wikipedia, “Natural language processing (NLP) is a subfield of linguistics, computer science, information engineering, and artificial intelligence concerned with the interactions between computers and human (natural) languages, in particular how to program computers to process and analyze large amounts of natural language data.”

Why are Salesforce Einstein Bots important?

Organizations are creating and implementing bots at an ever-increasing rate. By creating and implementing a bot an organization can begin to get a handle on support cases resolving many of them very quickly and for some scenarios eliminating the need to open one at all.

Of course, a bot isn’t something that is intended to supplant interaction with a human. However, they can be leveraged to provide a decision path for customers and route customer’s requests quickly based on their general needs while providing a positive initial reception which can augment your current customer service model.

Not only can bots improve productivity of agents by freeing them from having to spend time addressing some of the simpler, frequent requests but can now allow them to focus on more time consuming, complex issues.

Bots in a sense can also be considered another channel for content. However, instead of thinking of new ways to formulate questions from scratch organizations should try to marry current content to bot questions. Reusing content is good but it should rely on content that is based on existing knowledge. This reuse of inhouse documentation & materials will ultimately bring development costs down leading toward a more uniform experience with a higher degree of excellence for the interaction.

How to configure the platform for Salesforce Einstein Bots?

Before you jump in and start creating bots you would be best served by allocating time to plan your bot and consider how it will interact with your customers.

Collaborating and soliciting feedback from agents regarding the issues they experience with customers that are potential areas a bot could address is a good start.

Think about the bot’s persona, what its name should be and how you would like it to convey & reiterate a consistent image of the company overall.

Decisions related to which channels to use, ways in which customers can enter their questions, which licenses are required, which profile to use, whether to provide a menu, what is not in scope for the bot, … etc. should all be worked out in advance of bot development.

At what point does a human need to take over from the bot’s interaction with the customer, if at all?

In Salesforce you will need a Service Cloud license and a Chat or Messaging license. Once that is obtained you will need to turn on Lightning Experience. There is a guided setup flow for Chat you will need to run through. If your organization has Knowledge articles you want to make available to customers through the bot that will need to be enabled also. In your Salesforce Org if you go to Setup and type Einstein Bots in the quick select area it will return Einstein Bots you can click on. Then under Settings there is a toggle to enable Einstein Bots.

When ready make an Embedded Chat button available on your published Salesforce site or community site for your customers to interact with. A Salesforce community site is preferred.

Check out the https://trailhead.salesforce.com/en/home free training to find out more about how to create bots within Salesforce.

Things to consider when maintaining Salesforce Einstein Bots.

Salesforce documentation indicates that the following items also be considered when planning bot creation:

  • Chat and Messaging licenses support different channels (such as SMS or Facebook Messenger) and might have different requirements.
  • Each org is provided 25 Einstein Bots conversations per month for each user with an active subscription.
  • To make full use of the Einstein Bots Performance page, obtain the Service Analytics App.

Learning Hadoop: The key features and benefits of Hadoop

What are the key features and benefits of Hadoop? Why is Hadoop such a successful platform?

Apache Hadoop, mostly called just Hadoop, is a software framework and platform for reading, processing, storing and analyzing very large amounts of data. There are several features of Hadoop that make it a very powerful solution for data analytics.

Hadoop is Distributed

With Hadoop, from a few to hundreds or thousands of commodity servers (called nodes) can be connected (forming a cluster) to work together to achieve whatever processing power and storage capability is needed. The software platform enables the nodes to work together, passing work and data between them. Data and processing is distributed across nodes which spreads the load and significantly reduces the impact of failure.

Hadoop is Scalable

In the past, to achieve extremely powerful computing, a company would have to buy very expensive, large, monolithic computers. As data growth exploded, eventually even those super computers would become insufficient. With Hadoop, from a few to hundreds or thousands or even millions of commodity servers can be relatively easily connected to work together to achieve whatever processing power and storage capability is needed. This allows a company or project to start out small and then grow as needed inexpensively, without any concern about hitting a limitation.

Hadoop is Fault Tolerant

Hadoop was designed and built around the fact that there will be frequent failures on the commodity hardware servers that make up the Hadoop cluster. When a failure occurs, the software handles the automatic reassignment of work and replication of data to other nodes in the cluster, and the system continues to function properly without manual intervention. When a node recovers, from a reboot for example, it will rejoin the cluster automatically and become available for work.

Hadoop is backed by the power of Open Source

Hadoop is open source software, which means that it can be downloaded, installed, used and even modified for free. It is managed by the renown non-profit group, Apache Software Foundation (ASF), hence the name Apache Hadoop. The group is made up of many brilliant people from all over the world, many of whom work at some of the top technology companies, who commit their time to managing the software. In addition, there are also many developers that contribute code to enhance or add new features and functionality to Hadoop or to add new tools that work with Hadoop. The various tools that have been built over the years to complement core Hadoop make up what is called the Hadoop ecosystem. With a large community of people from all over the world continuously adding to the growth of the Hadoop ecosystem in a well-managed way, it will only get better and become more useful to many more use-cases.

These are the reasons Hadoop has become such a force within the data world. Although there is some hype around the big data phenomenon, the benefits and solutions based on the Hadoop ecosystem are real.

You can learn more at https://hadoop.apache.org